Tag Archives: ac compressor for

China best Ybf4PCS-15.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit air compressor price

Product Description

Product Description

 

ABOUT US

HangZhou Ouyu  is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.

Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.

Compressor Model Nominal Motor Power (HP/KW) Displacement (50Hz)m³/h Number of Cylinder x Diameter x Stroke mm Oil injection volume (L) Powersupply V/Φ/Hz Electricalparameter Crankcase Heater (220V) W Oilsupply method Weight (including freezingoil) Kg
Max.operating current A Starting current/rotor locked current. Operating current A
YBF2FC-2.2Z 2/1.5 9.54 2×φ46×33 1 △/Y   
  Directly start the motor
220~240△
380~420Y
/3~/50
265~290△
400~480Y
/3~/60
8.5/4.9 39/22.5 60 Centrifgal lubrcation 45
YBF2FC-3.2G 3/2.2 9.54 2×φ46×33 1 10.0/5.8 44.2/25.5 60 47
YBF2DC-2.2Z 2/1.5 13.42 2×φ50×39.3 1.5 11.9/6.9 53.7/30.7 100 68
YBF2DC-3.2G 3/2.2 13.42 2×φ50×39.3 1.5 13.5/7.8 64/37 100 71
YBF2CC-3.2Z 3/2.2 16.24 2×φ55×39.3 1.5 14.8/8.5 64/37 100 70
YBF2CC-4.2G 4/3.0 16.24 2×φ55×39.3 1.5 16.4/9.4 76.6/44.2 100 70
YBF4FC-3.2Z 3/2.2 18.05 4×φ41×39.3 2 15.9/9.2 76.6/44.2 100 81
YBF4FC-5.2G 5/3.7 18.05 4×φ41×39.3 2 18.7/10.8 107.7/62.2 100 85
YBF4EC-4.2Z 4/3.0 22.72 4×φ46×39.3 2 18.5/10.7 92.7/53.3 100 82
YBF4EC-6.2G 6/4.4 22.72 4×φ46×39.3 2 22.9/13.2 107.7/62.2 100 85
YBF4DC-5.2Z 5/3.7 26.84 4×φ50×39.3 2 23.4/13.5 107.7/62.2 100 85
YBF4DC-7.2G 7/5.1 26.84 4×φ50×39.3 2 27.5/15.9 142.8/82.4 100 88
YBF4CC-6.2Z 6/4.4 32.48 4×φ55×39.3 2 27.5/15.9 142.8/82.4 100 89
YBF4CC-9.2G 9/6.6 32.48 4×φ55×39.3 2 34.5/20.0 142.8/82.4 100 89
YBF4VCS-6.2Z 6/4.4 34.73 4×φ55×39.3 2.6 PW
Split winding starting motor
380~420YY
/3/50
400~480YY
/3/60
14 39/68 120 117
YBF4VCS-10.2G 10/7.5 34.73 4×φ55×42 2.6 21 59/99 120 127
YBF4TCS-8.2Z 8/5.5 41.33 4×φ60×42 2.6 17 49/81 120 122
YBF4TCS-12.2G 12/8.8 41.33 4×φ60×42 2.6 24 69/113 120 129
YBF4PCS-10.2Z 10/7.5 48.05 4×φ65×42 2.6 21 59/99 120 127
YBF4PCS-15.2G 15/10.5 48.05 4×φ65×42 2.6 31 81/132 120 135
YBF4NCS-12.2Z 12/8.8 56.25 4×φ70×42 2.6 24 69/113 120 129
YBF4NCS-20.2G 20/15 56.25 4×φ70×42 2.6 37 97/158 120 138
YBF4H-15.2Z 15/10.5 73.6 4×φ70×55 4.5 31 81/132 120 Forced-lubrication 183
YBF4H-25.2G 25/18.5 73.6 4×φ70×55 4.5 45 116/193 120 194
YBF4G-20.2Z 20/15 84.5 4×φ75×55 4.5 37 97/158 120 192
YBF4G-30.2G 30/22 84.5 4×φ75×55 4.5 53 135/220 120 206
YBF6H-25.2Z 25/18.5 110.5 6×φ70×55 4.75 45 116/193 120 224
YBF6H-35.2G 35/25.5 110.5 6×φ70×55 4.75 61 147/262 120 235
YBF6G-30.2Z 30/22 126.8 6×φ75×55 4.75 53 135/220 120 228
YBF6G-40.2G 40/30 126.8 6×φ75×55 4.75 78 180/323 120 238
YBF6F-40.2Z 40/30 151.6 6×φ82×55 4.75 78 180/323 120 238
YBF6F-50.2G 50/37 151.6 6×φ82×55 4.75 92 226/404 120 241

Company Profile

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Years
Warranty: 1 Years
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Structure Type: Semi-Closed Type
Samples:
US$ 490/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

Can you explain the basics of air compressor terminology?

Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:

1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.

2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.

3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.

4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.

5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.

6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.

7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.

8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.

9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.

These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.

China best Ybf4PCS-15.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   air compressor priceChina best Ybf4PCS-15.2g Semi-Hermetic Piston Refrigeration Air Compressor for AC for Cold Room Condensing Unit   air compressor price
editor by CX 2024-04-23

China wholesaler Auto Air AC Compressor for CHINAMFG Sorenta 2.2 Diesel wholesaler

Product Description

Product Description

Product Name: Auto Air AC Compressor for CHINAMFG Sorenta 2.2 Diesel
Model No.: ST972630
Application: Kia Sorenta 2.2 Diesel
Package: one pc packed in box, 4box packed in 1 carton
Brand: RCAP OR OEM

Detailed Photos

 

 

Packaging & Shipping

Company Profile

FAQ

Showroom and Warehouse

Production

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Classification: Variable Capacity
Job Classification: Rotary Type
Transmission Power: Other
Cooling Method: Air-cooled
Cylinder Arrangement Mode: Other
Cylinder Stage: Other
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China wholesaler Auto Air AC Compressor for CHINAMFG Sorenta 2.2 Diesel   wholesaler China wholesaler Auto Air AC Compressor for CHINAMFG Sorenta 2.2 Diesel   wholesaler
editor by CX 2024-04-22

China Good quality 22kw 30HP Stainless Steel Silent AC Electric Water Lubrication Medical Oil Free Rotary Screw Air Compressor for Food Pharmaceutical Industrial with Great quality

Product Description

Model :  Oil Free Series
Type:  Oil Free Screw Air Compressor
Working Pressure:  8~12.5bar
Installed Motor Power:  7.5~250 Kw
Capacity: 0.81~39.30 m3/min
Driven Method: Direct Driven
Power 380V / 3PH / 50HZ / 60HZ
220V / 3PH / 50HZ / 60HZ
440V / 3PH / 50HZ / 60HZ
415V / 3PH / 50HZ / 60HZ
Can be customized
Transport Package: Standard Wooden Packing
Motor protection grade IP54
Insulation class F
Outlet Air Humidity  ambient temperature+10ºC

Product Features
        In pharmaceutical, electronic, chemical, microbial fermentation, blow moulding, pressure detection and other industrial production, there are many medium-pressure compressed air to be used to 1.6-4.0 MPa in power plants, naval ships, national defense facilities. At present, piston air compressors are mostly used at home and abroad, while piston air compressors are characterized by large vibration, high noise, large leakage and short service life, so their efficiency is very low and the same work is done. The medium pressure oil-free screw machine has compact structure, high working efficiency, low noise, low vibration, easy maintenance, low operating cost and good air quality. At the same time, the series of machines are controlled by micro-computer system. The whole machine has multiple protective performance of pressure, temperature and overload energy.
1.Constant pressure control: high-precision constant pressure control with a pressure fluctuation range within0.01MPa.
2. Variable frequency soft start: remove CHINAMFG current during starting, avoid the power grid impact, prevent the current impact through gradual speed regulation and improve flexibility; 
3.No idling: prevent idling of the compressor during running and reduce invalid energy consumption;
3.High performance vector control: low-frequency starting provides a large torque and a low running current, ensuring to get a reasonable torque to drive the air compressor to run stably with the minimum temperature rise of the motor within a wide speed range;

Model Working pressure Capacity Motor power Noise
dB(A)
Inlet and outlet pipe dia. of cooling water Cooling water
volume
Lubricating
water
Dimension(mm) Net weight Air outlet
bar m3/min kw/hp Inlet water
temp. 32ºC(T/H)
L L*W*H KGS
SGM08 8 1.17  7.5/10 58 3/4″ 2 10 800*800*1100(A)
800*800*1100(W)
470 3/4″
10 1.05 
12.5 0.81 
SGM11 8 1.65  11/15 60 1″ 2.5 26 1200*760*1300(A)
1200*760*1300(W)
580 3/4″
10 1.42 
12.5 1.10 
SGM15 8 2.43  15/20 63 1″ 3.5 26 1200*760*1300(A)
1200*760*1300(W)
620 3/4″
10 2.17 
12.5 1.80 
SGM18 8 3.13  18.5/25 65 1″ 4 30 1400*900*1450(A)
1400*900*1450(W)
680 1″
10 2.82 
12.5 2.05 
SGM22 8 3.52  22/30 65 1″ 5 30 1400*900*1450(A)
1400*900*1450(W)
730 1″
10 3.21 
12.5 2.78 
SGM30 8 5.12  30/40 67 1 1/2″ 7 40 1550*1150*1500(A)
1500*1150*1300(W)
1100 1 1/4″
10 4.43 
12.5 3.63 
SGM37 8 6.30  37/50 67 1 1/2″ 9 40 1550*1150*1500(A)
1500*1150*1300(W)
1150 1 1/4″
10 5.33 
12.5 4.77 
SGM45 8 7.40  45/60 68 1 1/2″ 10 90 1800*1300*1750(A)
1800*1300*1680(W)
1390 2″
10 6.30 
12.5 5.56 
SGM55 8 9.60  55/75 70 1 1/2″ 12 120 1980*1400*1850(A)
1800*1300*1680(W)
1470 2″
10 8.55 
12.5 7.67 
SGM75 8 13.00  75/100 73 1 1/2″ 18 120 2100*1600*1900(A)
1800*1300*1750(W)
2250
1630
2″
10 11.50 
12.5 9.70 
SGM90 8 14.80  90/120 73 1 1/2″ 20 180 2400*1600*2000(A)
2200*1550*1800(W)
2650
2350
2 1/2″
10 13.90 
12.5 12.60 
SGM110 8 19.85  110/150 78 2″ 24 180 2700*1600*2100(A)
2200*1550*1800(W)
2950
2460
2 1/2″
10 16.66 
12.5 15.56 
SGM132 8 23.10  132/175 78 2″ 30 240 3000*1700*2250(A)
2200*1550*1800(W)
3500
2500
2 1/2″
10 19.97 
12.5 16.90 
SGM160 8 28.11  160/200 80 3″ 35 240 3000*1800*2100(W) 3700 3″
10 25.45 
12.5 22.52 
SGM185 8 33.97  185/250 80 3″ 38 300 3000*1800*2100(W) 3750 3″
10 29.00 
12.5 25.21 
SGM200 8 36.75  200/275 80 4″ 42 300 3100*1850*2100(W) 3900 4″
10 32.78 
12.5 29.24 
SGM220 8 39.67  220/300 80 4″ 47 360 3100*1850*2100(W) 4200 4″
10 36.75 
12.5 29.63 
SGM250 8 43.50  250/350 80 4″ 53 360 3100*1850*2100(W) 4600 4″
10 39.30 
12.5 34.00 
Motor Protection Class:IP54/IP55 or as per your requests.
Voltage: 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
In the external dimensions: “A” means air cooling, and “W” means water cooling.

Q1: What is the rotor speed for the air end?
A1: 2980rmp.

Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)

Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).

Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.

Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.

Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.

Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.

Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.

Q9: Do you have spare parts in stock?
A9: Yes, we do.

Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.

If you are interested in any of our products,please feel free to contact us.
We are looking CHINAMFG to cooperating,growing and developing with your sincerely.

 

After-sales Service: Online Support, Dispatched Engineers
Warranty: 1 Year
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the energy-saving technologies available for air compressors?

There are several energy-saving technologies available for air compressors that help improve their efficiency and reduce energy consumption. These technologies aim to optimize the operation of air compressors and minimize energy losses. Here are some common energy-saving technologies used:

1. Variable Speed Drive (VSD) Compressors:

VSD compressors are designed to adjust the motor speed according to the compressed air demand. By varying the motor speed, these compressors can match the output to the actual air requirement, resulting in energy savings. VSD compressors are particularly effective in applications with varying air demands, as they can operate at lower speeds during periods of lower demand, reducing energy consumption.

2. Energy-Efficient Motors:

The use of energy-efficient motors in air compressors can contribute to energy savings. High-efficiency motors, such as those with premium efficiency ratings, are designed to minimize energy losses and operate more efficiently than standard motors. By using energy-efficient motors, air compressors can reduce energy consumption and achieve higher overall system efficiency.

3. Heat Recovery Systems:

Air compressors generate a significant amount of heat during operation. Heat recovery systems capture and utilize this wasted heat for other purposes, such as space heating, water heating, or preheating process air or water. By recovering and utilizing the heat, air compressors can provide additional energy savings and improve overall system efficiency.

4. Air Receiver Tanks:

Air receiver tanks are used to store compressed air and provide a buffer during periods of fluctuating demand. By using appropriately sized air receiver tanks, the compressed air system can operate more efficiently. The tanks help reduce the number of starts and stops of the air compressor, allowing it to run at full load for longer periods, which is more energy-efficient than frequent cycling.

5. System Control and Automation:

Implementing advanced control and automation systems can optimize the operation of air compressors. These systems monitor and adjust the compressed air system based on demand, ensuring that only the required amount of air is produced. By maintaining optimal system pressure, minimizing leaks, and reducing unnecessary air production, control and automation systems help achieve energy savings.

6. Leak Detection and Repair:

Air leaks in compressed air systems can lead to significant energy losses. Regular leak detection and repair programs help identify and fix air leaks promptly. By minimizing air leakage, the demand on the air compressor is reduced, resulting in energy savings. Utilizing ultrasonic leak detection devices can help locate and repair leaks more efficiently.

7. System Optimization and Maintenance:

Proper system optimization and routine maintenance are essential for energy savings in air compressors. This includes regular cleaning and replacement of air filters, optimizing air pressure settings, ensuring proper lubrication, and conducting preventive maintenance to keep the system running at peak efficiency.

By implementing these energy-saving technologies and practices, air compressor systems can achieve significant energy efficiency improvements, reduce operational costs, and minimize environmental impact.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What maintenance is required for air compressors?

Maintaining air compressors is essential to ensure their optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, improves efficiency, and reduces the risk of accidents. Here are some key maintenance tasks for air compressors:

1. Regular Inspection: Perform visual inspections of the air compressor to identify any signs of wear, damage, or leaks. Inspect the compressor, hoses, fittings, and connections for any abnormalities. Pay attention to oil leaks, loose bolts, and worn-out components.

2. Oil Changes: If your air compressor has an oil lubrication system, regular oil changes are crucial. Follow the manufacturer’s recommendations for the frequency of oil changes and use the recommended oil type. Dirty or degraded oil can impact compressor performance and lead to premature wear.

3. Air Filter Cleaning or Replacement: Clean or replace the air filter regularly to ensure proper air intake and prevent contaminants from entering the compressor. Clogged or dirty filters can restrict airflow and reduce efficiency.

4. Drain Moisture: Air compressors produce moisture as a byproduct of the compression process. Accumulated moisture in the tank can lead to rust and corrosion. Drain the moisture regularly from the tank to prevent damage. Some compressors have automatic drains, while others require manual draining.

5. Belt Inspection and Adjustment: If your compressor has a belt-driven system, inspect the belts for signs of wear, cracks, or tension issues. Adjust or replace the belts as necessary to maintain proper tension and power transmission.

6. Tank Inspection: Inspect the compressor tank for any signs of corrosion, dents, or structural issues. A damaged tank can be hazardous and should be repaired or replaced promptly.

7. Valve Maintenance: Check the safety valves, pressure relief valves, and other valves regularly to ensure they are functioning correctly. Test the valves periodically to verify their proper operation.

8. Motor and Electrical Components: Inspect the motor and electrical components for any signs of damage or overheating. Check electrical connections for tightness and ensure proper grounding.

9. Keep the Area Clean: Maintain a clean and debris-free area around the compressor. Remove any dirt, dust, or obstructions that can hinder the compressor’s performance or cause overheating.

10. Follow Manufacturer’s Guidelines: Always refer to the manufacturer’s manual for specific maintenance instructions and recommended service intervals for your air compressor model. They provide valuable information on maintenance tasks, lubrication requirements, and safety precautions.

Regular maintenance is vital to keep your air compressor in optimal condition and extend its lifespan. It’s also important to note that maintenance requirements may vary depending on the type, size, and usage of the compressor. By following a comprehensive maintenance routine, you can ensure the reliable operation of your air compressor and maximize its efficiency and longevity.

China Good quality 22kw 30HP Stainless Steel Silent AC Electric Water Lubrication Medical Oil Free Rotary Screw Air Compressor for Food Pharmaceutical Industrial   with Great qualityChina Good quality 22kw 30HP Stainless Steel Silent AC Electric Water Lubrication Medical Oil Free Rotary Screw Air Compressor for Food Pharmaceutical Industrial   with Great quality
editor by CX 2023-11-10