Tag Archives: air compressor dental

China manufacturer Dental Air Compressors with Air Dryer (DA5002D) air compressor price

Product Description

Dental Air Compressors with Air Dryer (DA5002D)

Model: DA5002D

Voltage: 100-240V/50-60Hz

Power: 1100W [1.5HP]

Max Air Flow: 207L/min [7.4CFM]

Air Flow@7bar: 72L/min[2.54CFM]

Noise Level: ≤ 70 dB (A)

Max. Pressure: 8bar [116PSI]

Max Current: 5A

Dew-point Temperature: -20

Air Tank: 50L [11Gallon]

Gross Weight: 70.4kg [155.2lbs]

Net Weight: 56kg [123.5lbs]

Dimension: 710*490*750mm [28*19.3*29.5 inch]

Features:

(1) Lightweight;

(2) Maintenance free;

(3) Pressure adjustable;

(4) Ultra quiet;

(5) Thermally protected;

(6)Operating safely

(7) Auto stop and restart.

(8) Piston type;

(9) Used for DENTAL, MEDICAL

(10) 1.47HP, 50L tank;

Characteristics:

1. Oil free: Do not need any lubricated oil, and harmless to the human body.

2. Super silent: Noise level lower than 56dB(a) to reduce noise pollution.

3. Multi-phase filteration: Advanced multi-phase filtration to ensure extremely clean air, and lengthen service life.

4. Safety using: Air compressor motors equipped with thermal prevention device to avoid overheating and protect motors.

5. Clean tank: All air receiver tanks have internal epoxy coating applied to avoid corrosion.

6. Automatic adjustment: High quality pressure switch used to control the power of air compressor automatically by adjustment of pressure level.

7. Pressure adjustment: Working pressure could be adjusted to meet the demand of different supporting equipments.

8. High durability: Serviceable time exceeds 15, 000 hours.

9. Simple operation: Using directly when connecting with power.

10. Easy maintanance: No need any lubricated oil.

11. Warranty: 2 years.

Dry air:
Good quality dryer is essential equipment for the users.

The ambient air contains humidity and impurities which must be dully treated in order to guarantee clean,
Dry and pure air to the patients and to avoid the risk of corrosion and oxidation of the expensive dental instruments
Which are connected the the compressor.

The advantages of the “Air Dryer” system are the following:
No additional installation ( the system is integrated with the compressor)
No oxidation and corrosion;
Optimum air for patients, instruments and equipments;
Compactness;
Fully automatic operation;
Easy maintenance;
Low operative costs;
No power loss during the regeneration process;

Contact Us For Quote Now!

 

 

Add: NO108 Xingpu Road, Lujia Town, HangZhou City, ZheJiang Province, China

Model DA5001D DA5002D DA5003D DA5004D
Picture        
Voltage/Hz V 100-240 100-240 100-240 100-240
  Hz 50/60 50/60 50/60 50/60
Power HP 0.75 1.5 2.25 3
KW 0.55 1.1 1.65 2.2
Max Air Flow L/min 104 207 311 414
CFM 3.7 7.4 11 14.6
Air Flow@7bar L/min 36 72 108 144
CFM 1.27 2.54 3.81 5.08
Max. Pressure Bar 8 8 8 8
psi 116 116 116 116
Dew-point Temperature   -20 -20 -20 -20
Tank L 22 50 70 100
Gallon 5.8 11.0 15.4 22.0
Net Weight Kg 31 56 84.5 108
Lbs 68.3 123.5             186.3 238.1
Gross Weight Kg 41.2 70.4 96 145
Lbs 90.8 155.2 211.6 319.7
Noise Level dB(A) ≤70 ≤70 ≤70 ≤70
Max current A 2.5 5 7.5 10
Dimensions mm 550×460×520 710×490×750 920×500×750 1070×520×730
inch 21.7×18.1×20.5 28×19.3×29.5 36.2×19.7×29.5 42.1×20.5×28.7

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Interface: Other
Teeth Whitening Method: Dental Chair
Applicable Departments: Oral Surgery
Certification: CE
Type: Compressor
Material: Iron
Customization:
Available

|

air compressor

How are air compressors used in the food and beverage industry?

Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:

1. Packaging and Filling:

Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.

2. Cleaning and Sanitization:

Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.

3. Cooling and Refrigeration:

In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.

4. Aeration and Mixing:

Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.

5. Pneumatic Conveying:

In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.

6. Quality Control and Testing:

Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.

7. Air Agitation:

In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.

It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.

By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China manufacturer Dental Air Compressors with Air Dryer (DA5002D)   air compressor priceChina manufacturer Dental Air Compressors with Air Dryer (DA5002D)   air compressor price
editor by CX 2024-05-16

China best Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor with Good quality

Product Description

Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor

Power: 600W

Volt./Hz: 110~240 / V50~60Hz

Speed: 1400/1750r.p.m

Air flow: 118L/minat0Bar

Noise level: 52dB

Max pressure: 8Bar

Restart pressure: 5Bar

Tank capacity: 24L

Weight: 24/32kg

Product size: 410*410*550mm

We CONCERNMED make one-stop shopping hospital medical equipment:

Dental Equipment   Dental Chair
Dental Class B Autoclave
Dental Intra-Oral Camera
Dental Compressor
Dental Handpiece
Dental Ultrasonic Scaler
Dental Cabinet
Dental Instrument Washer
Others Dental Equipment

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Condition: New
Application: Pet
Nature: Specialized Equipment
Feature: Un-waterproof
Usage Times: Non-Disposable
Material: Metal

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

What is the role of air compressors in manufacturing and industrial processes?

Air compressors play a crucial role in various manufacturing and industrial processes, providing a reliable source of compressed air that powers a wide range of equipment and tools. Here are some key roles of air compressors in manufacturing and industrial settings:

1. Pneumatic Tools and Equipment:

Air compressors power a wide range of pneumatic tools and equipment used in manufacturing processes. These tools include impact wrenches, air drills, sanders, grinders, nail guns, and spray guns. Compressed air provides the necessary force and energy for these tools, enabling efficient and precise operations.

2. Automation and Control Systems:

Compressed air is used in automation and control systems within manufacturing facilities. Pneumatic actuators and valves use compressed air to control the movement of machinery and components. These systems are widely used in assembly lines, packaging operations, and material handling processes.

3. Air Blowing and Cleaning:

Compressed air is employed for blowing and cleaning applications in manufacturing and industrial processes. Air blowguns and air nozzles are used to remove debris, dust, and contaminants from surfaces, machinery, and products. Compressed air is also used for drying, cooling, and purging operations.

4. Air Separation and Gas Generation:

Air compressors are used in air separation plants to generate industrial gases such as nitrogen, oxygen, and argon. These gases are essential for various industrial processes, including metal fabrication, chemical production, and food packaging.

5. HVAC Systems:

Compressed air is utilized in heating, ventilation, and air conditioning (HVAC) systems. It powers pneumatic actuators for damper control, pneumatic controls for pressure regulation, and pneumatic valves for flow control in HVAC applications.

6. Air Compression for Storage and Transport:

Compressed air is used for storage and transport purposes in manufacturing and industrial settings. It is often used to pressurize storage tanks or containers that hold gases or liquids. Compressed air also facilitates the transfer of materials through pipelines and pneumatic conveying systems.

7. Process Instrumentation:

Compressed air is utilized in process instrumentation and control systems. It powers pneumatic instruments such as pressure gauges, flow meters, and control valves. These instruments play a critical role in monitoring and regulating various parameters in industrial processes.

8. Material Handling and Pneumatic Conveying:

In manufacturing and industrial facilities, compressed air is used for material handling and pneumatic conveying systems. It enables the movement of bulk materials such as powders, granules, and pellets through pipelines, facilitating efficient and controlled material transfer.

Overall, air compressors are vital components in manufacturing and industrial processes, providing a versatile and efficient source of power for a wide range of applications. The specific role of air compressors may vary depending on the industry, process requirements, and operational needs.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China best Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor   with Good qualityChina best Professional Silent Portable Oil Free Multiple Models Medical Dental Air Compressor   with Good quality
editor by CX 2024-05-16

China Hot selling 200L Quiet Silent Medical Hospital Dental 4 Stage Oil Free Piston Air Compressor 12v air compressor

Product Description

200L Quiet Silent Medical Hospital Dental 4 Stage Oil Free Piston Air Compressor

Product Parameters

Name Four Pole Air Compressor
Applicable Industries Manufacturing Plant, Food & Beverage Factory, Printing Shops, Construction works , Food & Beverage Shops, Advertising Company
Showroom Location None
Machinery Test Report Provided
Video outgoing-inspection Provided
Marketing Type Other
Core Components Pressure vessel, Engine, Motor, Pump, Bearing
Gas Type     Air
Configuration PORTABLE
Power Source     AC POWER
Type PISTON
Lubrication Style Oil-free
Mute Yes
Voltage 220V
OEM Welcomed
Certification CE, ISO9001

 

MODEL NAME

Delivery rate at 0 bar

Max. pressure

Nominal pressure

Noise level at nomal pressure

Motor input

Voltage

Frequency

OF4H750-200L

460 L/min

8 bar
116 CHINAMFG

6 bar
87 CHINAMFG

70 db(A)

3 KW

220 V

50 Hz

Product Display

Company Profile

Founded in 2002, ZHangZhoug CHINAMFG Electromechanical Co., Ltd. focus on manufacturing air compressors for more than 15 years. Our company is located in Daxi Pump Industrial Area, HangZhou City, ZHangZhoug, China. having more than 15000 square meter working area.We specialize in all kinds of piston air compressors, especially having advantages in our new advanced heavy-duty oil-free air compressors.

FAQ

Q1: Are you a factory or a trading company?
A: A: Manufacturer and we focus on the development and production of air compressors for more than 20 years.

Q2: Is OEM service available?
A: Of course. We have many years experience of OEM service.

Q3: Can I get a sample to check the quality?
A: We are glad to offer you samples for test. Leave us message of the item you want or your requirements. We will reply you within 24 hours in working time.

Q4: I am buying from another supplier, but need better service, would you match or beat the price I am paying?
A: We always feel we provide the best service and competitive prices. We would be more than happy to personalize a competitive quote for you, just email us.

Q5: Is customized service available?
A: Of course, OEM & ODM both are available. Please contact us for details.

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

What is the energy efficiency of modern air compressors?

The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:

Variable Speed Drive (VSD) Technology:

Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.

Air Leakage Reduction:

Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.

Efficient Motor Design:

The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.

Optimized Control Systems:

Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.

Air Storage and Distribution:

Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.

Energy Management and Monitoring:

Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.

It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.

Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.

air compressor

How is air pressure measured in air compressors?

Air pressure in air compressors is typically measured using one of two common units: pounds per square inch (PSI) or bar. Here’s a brief explanation of how air pressure is measured in air compressors:

1. Pounds per Square Inch (PSI): PSI is the most widely used unit of pressure measurement in air compressors, especially in North America. It represents the force exerted by one pound of force over an area of one square inch. Air pressure gauges on air compressors often display pressure readings in PSI, allowing users to monitor and adjust the pressure accordingly.

2. Bar: Bar is another unit of pressure commonly used in air compressors, particularly in Europe and many other parts of the world. It is a metric unit of pressure equal to 100,000 pascals (Pa). Air compressors may have pressure gauges that display readings in bar, providing an alternative measurement option for users in those regions.

To measure air pressure in an air compressor, a pressure gauge is typically installed on the compressor’s outlet or receiver tank. The gauge is designed to measure the force exerted by the compressed air and display the reading in the specified unit, such as PSI or bar.

It’s important to note that the air pressure indicated on the gauge represents the pressure at a specific point in the air compressor system, typically at the outlet or tank. The actual pressure experienced at the point of use may vary due to factors such as pressure drop in the air lines or restrictions caused by fittings and tools.

When using an air compressor, it is essential to set the pressure to the appropriate level required for the specific application. Different tools and equipment have different pressure requirements, and exceeding the recommended pressure can lead to damage or unsafe operation. Most air compressors allow users to adjust the pressure output using a pressure regulator or similar control mechanism.

Regular monitoring of the air pressure in an air compressor is crucial to ensure optimal performance, efficiency, and safe operation. By understanding the units of measurement and using pressure gauges appropriately, users can maintain the desired air pressure levels in their air compressor systems.

China Hot selling 200L Quiet Silent Medical Hospital Dental 4 Stage Oil Free Piston Air Compressor   12v air compressorChina Hot selling 200L Quiet Silent Medical Hospital Dental 4 Stage Oil Free Piston Air Compressor   12v air compressor
editor by CX 2024-05-15

China OEM Foshan Best Supplier Dental Air Compressor for Dental Chair air compressor parts

Product Description

Product Description

Description  
For Dental Chair 1
Power: 600 W/0.75Hp
Current: 2.7A
Air Flow: 70 L/min
Noise Level: 51 dB
Capacity Pressure: 0.8Mpa
Product Size: L400*W400*H610 mm
Net/Gross weight: 25/27 KG
Tank Capacity: 32 L
Package size: L450*W450*H650 mm

Detailed Photos

 

company information

HangZhou Tuokang Medical Instruments Co.,Ltd. Is a comprehensive company integrating R&D,manufacturing,sales, industry and independently develops products and complete accessories.

The main products are: dental equipment and related supplies such as dental consumables.The company’s characteristics:product diversification,courage to innovate,high quality and low price,has been unanimously recognized by customers at home and abroad.

The company’s operating philosophy is :to be a 1 – stop  dental equipment supplier in china.The company has a wealth of dental equipment resources,with the most preferential prices,the most abundant varieties,the best quality services,serving global dentists and hospital clinics.

FAQ

Q1. How do I order from you?
A1. We will make quotation after you send us your purchase plan (including product name, model and quantity). If you agree with the quotation, please send us your company name, address and telephone for goods delivery. We will make proforma invoice and inform you the payment way. Goods delivery details will also be informed accordingly.

Q2.What is your payment term ?
A2: We can accept T/T ,Paypal and Western union for small order or samples order.

Q3. How long is your delivery time?
A3. Generally it is 7-15 days if the goods are in stock. or it is 15-30 days if the goods are not in stock, it is according to quantity.

Q4.how about the quality for your product?
A4:we are very good quality,we make high quality and brand in the word.we make sure all products delivery check every one.

Q5: Do you offer guarantee for the products?
A5: Yes, we offer 1 year warranty to our products.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Applicable Departments: Oral Surgery
Certification: ISO, ISO9001,FSC,GMP
Type: Dental Air Compressor
Material: Metal
Model No.: Tkac-001
Transport Package: Cpaper Box/Carton
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China OEM Foshan Best Supplier Dental Air Compressor for Dental Chair   air compressor partsChina OEM Foshan Best Supplier Dental Air Compressor for Dental Chair   air compressor parts
editor by CX 2024-05-08

China Hot selling Medical Equipment Dental Oil-Free Portable Air Compressor for Dental Chair air compressor price

Product Description

Medical Equipment Dental Oil-Free Portable Air Compressor for Dental Chair
Dental Air Compressor (piston type)

Model No.: JRGA62
 
Specification:
Power: 1200W (2pcs 600W motor)
Volt./Hz:110~240V50~60Hz
Speed:1400/1750r.p.m
Air Flow: 236L/min at 0Bar
Noise Level: 53dB
MaxPressure:8Bar
Restart Pressure:5Bar
Tank Capacity: 60L
Weight: 47/59kg
Product Size: 700*400*680mm
Remark: All air compressors, can be with air dryer system & silent cabinet.  
 
 
Advantages:
Super silent.
Low working noise, create a quiet working environment.
 Low vibration.
With special rubber feet, reduce vibration during operation.
 Pure airflow.
Oil free design, no lubrication oil needed during operation.
 Core technology.
Diamond hardness cylinder ensure durable working performance. 
Fashion and durable design.
Compact structure, light weight. Under normal situation, can be used for more than 20000 hours.
 Use safety.
With multiple self-protection system, if here will be abnormal with pressure, current or voltage, the motor would cut off automatically to ensure equipment and personal safety.
 Easy operation.
Quite simple operation, connect to power supply, then no need any more maintenance, just drainage regularly.
 Low energy consumption.
Full automatic design, automatics top and restart control, low consumption. 
High precision filtration.
With double filters, ensure high precision of outlet airflow. 
Tank inside has done anti-rust treatment.
 Ensure pure outlet airflow for medical equipment.     

You may also like

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Dental Equipment
Material: Metal
Applicable Departments: All
Nature: Shared Instrument Equipment
Certification: CE
Kind: Oil Free Air Compressor
Customization:
Available

|

air compressor

Can air compressors be used for gas compression and storage?

Yes, air compressors can be used for gas compression and storage. While air compressors are commonly used to compress and store air, they can also be utilized for compressing and storing other gases, depending on the specific application requirements. Here’s how air compressors can be used for gas compression and storage:

Gas Compression:

Air compressors can compress various gases by utilizing the same principles applied to compressing air. The compressor takes in the gas at a certain pressure, and through the compression process, it increases the pressure and reduces the volume of the gas. This compressed gas can then be used for different purposes, such as in industrial processes, gas pipelines, or storage systems.

Gas Storage:

Air compressors can also be used for gas storage by compressing the gas into storage vessels or tanks. The compressed gas is stored at high pressure within these vessels until it is needed for use. Gas storage is commonly employed in industries where a continuous and reliable supply of gas is required, such as in natural gas storage facilities or for storing compressed natural gas (CNG) used as a fuel for vehicles.

Gas Types:

While air compressors are primarily designed for compressing air, they can be adapted to handle various gases, including but not limited to:

  • Nitrogen
  • Oxygen
  • Hydrogen
  • Carbon dioxide
  • Natural gas
  • Refrigerant gases

It’s important to note that when using air compressors for gas compression and storage, certain considerations must be taken into account. These include compatibility of the compressor materials with the specific gas being compressed, ensuring proper sealing to prevent gas leaks, and adhering to safety regulations and guidelines for handling and storing compressed gases.

By leveraging the capabilities of air compressors, it is possible to compress and store gases efficiently, providing a reliable supply for various industrial, commercial, and residential applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China Hot selling Medical Equipment Dental Oil-Free Portable Air Compressor for Dental Chair   air compressor priceChina Hot selling Medical Equipment Dental Oil-Free Portable Air Compressor for Dental Chair   air compressor price
editor by CX 2024-04-27

China Hot selling High Quality Dental Air Pump Compressor best air compressor

Product Description

High Quality Dental Air Pump Compressor

Product Description

Features: 
-Reliable and meet the requirements of the dental equipment manufacturer. 
-More than 24 liters each pressure vessel has a supervisory inspection certificate. 
-For dentists and dental technicians to provide a reliable source of green gas. 
-To eliminate the risk of cross infection. 
-Applicable to a wide variety of equipment, dental laboratory. 
-Effective prevention of dental equipment wear and tear.

Specification:
Model : TY-3EW-50
POWER : 1100W/1.6HP
AIR FLOW : 210 L/MIN
NOISE : 55db
MAX WORKING PRESSURE : 8 BAR
TNAK : VERTICAL 50 LITER
Net weight :  49 KG
package : strong box
 

Item No.

Voltage

Power

Air flow 
(L/min)

Noise 
(dB)

Air tank 
(L)

Max Pressure 
(bar)

Packing size 
(LxWxH)cm

Weight 
(KG)

Supply

KW

HP

TY-3EW-50 110V/60Hz 1.1 1.6 210 55 50 8 69.5×36.5×74.5 49 3 chairs
220V/50Hz

Advantage:
OIL FREE: Compare to lubrication compressor, one-step operation, do not need any lubricated oil, and harmless to the human body, more health and hygiene.
SUPER SILENT: Noise level lower than 60dB, ensure have friendly-enviromently treating room.
MULTI-PHASE FILTERATION: Advanced branded water filter to ensure extremely green and dry air.
EASY USING: One-step operation, when connecting with power, air compressor work automatic, also equipped with thermal prevention deviceto avoid over heating to protect motors.
GREEN AIR: Air tank have internal oxidation-proofed precess,avoaid corrosion and supply hygiene air to the equipments.
ENERGY SAVING: High quality pressure switch used to control the power of air compressor automatically stop when reach max pressure, and restart at mix pressure.
LOW VIBRATION: Robber foot reduce vibration and keep the air compressor away from wet place.
HIGH DURABILITY: long life air pump up to 3,000 hours working time.
SIMPLE OPERATION: No need to lubricate oil.

Applications: 
Dental clinic, medical and health, SPA, Tattoo house, scientific research, electronic, chemical, Laboratory, spraying, Industrial, Printing etc.

 

Quick Details   TY-3EW-50  
Applicable Industries: Medical & Dental Showroom Location: None
Condition: New Type: PISTON
Configuration: PORTABLE Power Source: AC POWER
Lubrication Style: Oil-free Mute: Yes
Power Source: AC POWER Brand Name: Toye
Lubrication Style: Oil-free Dimension(L*W*H): 69.5×36.5×74.5CM
Place of Origin: HangZhou ,China Warranty: 2 Years
Voltage: 220V/110V Air capacity: 210L/min
Weight: 49KGS Video outgoing-inspection: Provided
Working Pressure: 0.8 bar Warranty of core components: 2 years
Machinery Test Report: Provided Gas Type: Natural Gas
Marketing Type: New products 2571 Usage:  
Core Components: Pressure vessel, Motor, Pump VDC: 220V/110V
Product name: Air compressor Local Service Location: NONE
Air delivery: 50L Certification CE,ISO13485
After Warranty Service: Online and Offline services Package Carton/wooden box
After sales Service Provided: Online and Offline services Supply Ability 1000PCS/month

OIL FREE: Compare to lubrication compressor, one-step operation, do not need any lubricated oil, and harmless to the human body, more health and hygiene.

SUPER SILENT: Noise level lower than 60dB, ensure have friendly-enviromently treating room.

MULTI-PHASE FILTERATION: Advanced branded water filter to ensure extremely green and dry air.

EASY USING: One-step operation, when connecting with power, air compressor work automatic, also equipped with thermal prevention deviceto avoid over heating to protect motors.

GREEN AIR: Air tank have internal oxidation-proofed precess,avoaid corrosion and supply hygiene air to the equipments.

ENERGY SAVING: High quality pressure switch used to control the power of air compressor automatically stop when reach max pressure, and restart at mix pressure.

LOW VIBRATION: Robber foot reduce vibration and keep the air compressor away from wet place.

HIGH DURABILITY: long life air pump up to 3,000 hours working time.

SIMPLE OPERATION: No need to lubricate oil.

Applications:
Dental clinic, medical and health, SPA, Tattoo house, scientific research, electronic, chemical, Laboratory, spraying, Industrial, Printing etc.

More Design

Certifications

 

Company Profile

 

Exhibition

Production Workshop

 

 

Packaging & Shipping

Client Feedback

 

 

FAQ

1.Q:Are you a factory or trading company?

A:We are factory.we produce dental chair, dental intra oral camera and dental air compressor, and it’s approved CE certificated.

2.Q:Where is your factory located? How can I visit there?
A:Our factory is located in HangZhou City, ZheJiang Province, China, near HangZhou.You can fly to Xihu (West Lake) Dis. airport ,you can take tax or metro to HangZhou directly.All our clients, from home or abroad, are warmly welcome to visit us!

3.Q: How can I get Fob or C&F price?
A: Normally production time of products is from 2 week to 1 month depending on the quantity ordered. If you are sourcing a product, our representative will give you specific information regarding the lead time. If you need a rush order, contact our representatives to discuss your specific needs.

4.Q: How long is my warranty and what does it cover?
A:Detnal unit chair carry the full 1 year manufacturer warranty. Each warranty period begins at the date of delivery date and ends after 1 year.The warranty varies by option items and manufacturer All warranty claims will be void due to neglect, lack of maintenance, and/or improper handling.

5.How can I get the after sevice? How can I get the spare part after 1 year warranty?
A: We welcome your chats online (Chat or leave message: After service) or e-mail to us regarding any technical or related questions that you may have. And we will offer some free sparts for container order. We gurantee keep dental chair units spare parts offer.

If you want to know more information about our products welcome to contact us in any time, And welcome to our company!

Website: toyedent
Add: 5/F Zhisheng BLDG.,East Keji Rd.,Shishan Town,Xihu (West Lake) Dis. District, HangZhou

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO
Type: Piston
Material: Metal
Power Source: AC Power
Lubrication Style: Oil-Free
Pressure: 0~0.8 MPa
Samples:
US$ 265/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How does variable speed drive technology improve air compressor efficiency?

Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:

1. Matching Air Demand:

Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.

2. Reduced Unloaded Running Time:

Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.

3. Soft Starting:

Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.

4. Energy Savings at Partial Load:

In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.

5. Elimination of On/Off Cycling:

Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.

6. Enhanced System Control:

VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.

By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

How does an air compressor work?

An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:

1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.

2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.

3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.

4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.

5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.

6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.

Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.

In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.

China Hot selling High Quality Dental Air Pump Compressor   best air compressorChina Hot selling High Quality Dental Air Pump Compressor   best air compressor
editor by CX 2024-04-25

China high quality Best Seller Electric Oilless Protable Dental Air Compressor supplier

Product Description

Characteristics:
1. Oil free: Without lubricated oil, harmless to the human body.
2. Super silent: Noise level lower than 56dB(a) to reduce noise pollution.
3. Multi-phase filteration: Advanced multi-phase filtration to ensure extremely clean air, and lengthen service life.
4. Safety using: Air compressor motors equipped with thermal prevention device to avoid overheating and protect motors.
5. Clean stainless steel tank: All air receiver tanks have internal epoxy coating applied to avoid corrosion.
6. Automatic adjustment: High quality pressure switch used to control the power of air compressor automatically by adjustment of pressure level.
7. Pressure adjustment: Working pressure could be adjusted to meet the demand of different supporting equipments.
8. Simple operation: Using directly when connecting with power.

 

Product Description

Power: 840W(1HP)

Supply Voltage: 220V AC, 50HZ (220V AC,
60HZ 110V AC, 60HZ)
Air Displacement:100L/min
Noise: 53db
Tank: 35L
Max Pressure:8bar
Weight: 35kgs
Dimension: 52 *52 * 75cm
For 2 units

 

 

Company Profile

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Certification: ISO, CE
Type: Cleaning & Filling Teeth Equipments
Material: Metal
Certificate: CE
Power: 840W(1HP)
Air Displacement: 100L/Min
Customization:
Available

|

air compressor

Can air compressors be used for shipbuilding and maritime applications?

Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:

1. Pneumatic Tools and Equipment:

Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.

2. Painting and Surface Preparation:

Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.

3. Pneumatic Actuation and Controls:

Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.

4. Air Start Systems:

In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.

5. Pneumatic Conveying and Material Handling:

In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.

6. Air Conditioning and Ventilation:

Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.

These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China high quality Best Seller Electric Oilless Protable Dental Air Compressor   supplier China high quality Best Seller Electric Oilless Protable Dental Air Compressor   supplier
editor by CX 2024-04-16

China Best Sales 8 Oil-Free Heavy Duty Rotary Oil Piston Industrial Single Mini LG Movable Dental Max Portable High Pressure Hot Oilless Screw Part Free AC Air Pump Compressor with Best Sales

Product Description

            Model                                      SPECIFICATION
LGS139571A  Magnetic Valve with lamp
LGS139571B                Replace the Vertical Switch with a Horizontal Switch
LGS139571C + Vertical Switch, Ajustment Double Pressure Guage
LGS139571D +Vertical Switch,Oil-Water Separator

Rated Power: 1390W/1.85HP
Actual Power:1200W/1.6HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 6.5A,2850RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 8.5A,3500RPM
Tank Size/Volume: 160x360mm/9L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*25.8*63.7mm
Noise:<76dB
Motor Overheat Protection:<135ºC
Exhaust Volume:120L/Min
Upper Air Time: 18Seconds
Power Line :1*3*1.3m
Adaptive Capacitance: 25Uf
Crankshaft Eccentricity:7.0mm
Woven Bag Size: 98x76cm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Solenoid valve with lamp, zinc alloy check valve

            Model                                      SPECIFICATION
LGS139018A  Magnetic Valve with lamp
LGS139018B                Replace the Vertical Switch with a Horizontal Switch
LGS139018C + Vertical Switch, Ajustment Double Pressure Guage
LGS139018D +Vertical Switch,Oil-Water Separator

Rated Power: 1390W/1.85HP
Actual Power:1200W/1.6HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 6.5A,2850RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 8.5A,3500RPM
Tank Size/Volume: 220X400mm/18L
Rating Pressure:  8Bar/116PSI/0.8Mpa
Cylinder:2*25.8*63.7mm
Noise:<76dB
Motor Overheat Protection:<135ºC
Exhaust Volume:100-120L/Min
Upper Air Time: 44Seconds
Power Line: 1.5m
Power Line :1*3*1.3m
Adaptive Capacitance: 25Uf
Crankshaft Eccentricity:7.0mm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Solenoid valve with lamp, zinc alloy check valve

            Model                                      SPECIFICATION
LGS139571A  Magnetic Valve with lamp
LGS139571B                Replace the Vertical Switch with a Horizontal Switch
LGS139571C + Vertical Switch, Ajustment Double Pressure Guage
LGS139571D +Vertical Switch,Oil-Water Separator

Rated Power: 1390W/1.85HP
Actual Power:1200W/1.6HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 6.5A,2850RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 8.5A,3500RPM
Tank Size/Volume:  240X400mm/24L
Rating Pressure: 8Bar/116PSI/0.8Mpa
Cylinder: 2*25.8*63.7mm
Noise:<76dB
Motor Overheat Protection:<135ºC
Exhaust Volume: 120L/Min
Upper Air Time:  49Seconds
Power Line :1*3*1.3m
Adaptive Capacitance: 25Uf
Crankshaft Eccentricity:7.0mm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Solenoid valve with lamp, zinc alloy check valve

            Model                                      SPECIFICATION
LGS139050A  Magnetic Valve with lamp
LGS139050B                Replace the Vertical Switch with a Horizontal Switch
LGS139050C + Vertical Switch, Ajustment Double Pressure Guage

Rated Power: 2780W/3.7HP
Actual Power:2400W/3.2HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 13A,2850RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 16A,3500RPM
Tank Size/Volume: 280X500mm/50L
Rating Pressure: 8Bar/116PSI/0.8Mpa
Cylinder:4*25.8*63.7mm
Noise:<76dB
Motor Overheat Protection:<135ºC
Exhaust Volume: 240L/Min
Upper Air Time: 48Seconds
Power Line :1.5*3*1.3m
Adaptive Capacitance: 30Uf
Crankshaft Eccentricity:7.0mm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Quick Connection,Solenoid valve with lamp, zinc alloy check valve

            Model                                      SPECIFICATION
LGS139050D +Vertical Switch,Magnetic Valve with lamp,Oil-Water Separator

Rated Power: 2780W/3.7HP
Actual Power:2400W/3.2HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 13A,2850RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 16A,3500RPM
Tank Size/Volume: 280X500mm/50L
Rating Pressure: 8Bar/116PSI/0.8Mpa
Cylinder:4*25.8*63.7mm
Noise:<76dB
Motor Overheat Protection:<135ºC
Exhaust Volume: 240L/Min
Upper Air Time: 48Seconds
Power Line :1.5*3*1.3m
Adaptive Capacitance: 30Uf
Crankshaft Eccentricity:7.0mm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Quick Connection,Solenoid valve with lamp, zinc alloy check valve

 

            Model                                      SPECIFICATION
LGS60009 Base Air Compressor
LGS60009A With Magnetic Valve
LGS60009B Replace the Vertical Switch with a Horizontal Switch
LGS60009C + Vertical Switch, Ajustment Double Pressure Guage
LGS60009D +Vertical Switch,Oil-Water Separator

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 160x360mm/9L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Exhaust Volume:48.5L/Min
Upper Air Time: 55Seconds
Power Line :0.75*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm
Woven Bag Size: 98x76cm
Basic configuration: Single pressure gauge, vertical switch, single ball valve

            Model                                      SPECIFICATION
LGS60571 Base Air Compressor

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed:220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 240x400mm/24L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Exhaust Volume:60-65L/Min
Upper Air Time: 140Seconds
Power Line :0.75*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm
Basic configuration: Single pressure gauge, vertical switch, single ball valve

            Model                                      SPECIFICATION
LGS60571A With Magnetic Valve

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed:220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 240x400mm/24L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Exhaust Volume:60-65L/Min
Upper Air Time: 140Seconds
Power Line :0.75*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm
Basic configuration: Single pressure gauge, vertical switch, single ball valve

            Model                                      SPECIFICATION
LGS60571B Replace the Vertical Switch with a Horizontal Switch

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed:220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 240x400mm/24L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Exhaust Volume:60-65L/Min
Upper Air Time: 140Seconds
Power Line :0.75*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm
Basic configuration: Single pressure gauge, vertical switch, single ball valve

            Model                                      SPECIFICATION
LGS60571D +Vertical Switch,Oil-Water Separator

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed:220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 240x400mm/24L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Exhaust Volume:60-65L/Min
Upper Air Time: 140Seconds
Power Line :0.75*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm
Basic configuration: Single pressure gauge, vertical switch, single ball valve

 

            Model                                      SPECIFICATION
LGS60050-1A With Magnetic Valve
LGS60050-1B Replace the Vertical Switch with a Horizontal Switch
LGS60050-1C + Vertical Switch, Ajustment Double Pressure Guage
LGS60050-1D +Vertical Switch,Oil-Water Separator

Rated Power: 600W-680W/0.8HP-1HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 3A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 6A ,2050RPM
Tank Size/Volume: 280x500mm/50L
Rating Pressure:8Bar/116PSI/0.8Mpa
Cylinder:2*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Number Of Compression Stage: 1 CHINAMFG Compressor
Exhaust Volume:65L/Min
Upper Air Time: 220Seconds
Power Line :1.5*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm

            Model                                      SPECIFICATION
LGS60050A With Magnetic Valve

Rated Power: 1200W-1350W/1.2HP-2HP
Voltage,Frequency,Current,No-Load Speed: 220V 50HZ 6A,1420RPM
Voltage,Frequency,Current,No-Load Speed: 220V 60HZ 12A ,2050RPM
Tank Size/Volume: 280x500mm/50L
Rating Pressure: 8Bar/116PSI/0.8Mpa
Cylinder:4*24.5*63.7mm
Noise:<68dB
Motor Overheat Protection:<135ºC
Number Of Compression Stage: 1 CHINAMFG Compressor
Exhaust Volume: 120L/Min
Upper Air Time: 110Seconds
Power Line :1.5*3*1.3m
Adaptive Capacitance: 20Uf
Crankshaft Eccentricity:5.8mm

Basic configuration: Single pressure gauge, vertical switch, single ball valve,Quick connection, with solenoid valve, zinc alloy check valve

Scope of application:
Using for Pushing Pneumatic Nail Gun, Air Screw , Spray Painting Gun to work, also use to miniature instrument, blowing dust, Air inflation for small car and so on.
Product  Feature:

  1. High Power, high efficiency, low energy, high reliability.
  2. Piston Ring: New ECO circle, low friction coefficient, Auto lubricating system.
  3. Cylinder Liner: Surface hardening, deplete hardness, Accelerate the heat transfer, long using time.
  4. Suction and exhaust valve: Using advanced foreign technology.
  5. Multiple Pressure: Overload protection

   

 Oilless Air Compressor Featuers:
1.Super Silent
Super low noise.The output air pressure is stable without fluctuations, reducing noise pollution.
   
     2. Safety
 
If the voltage or current cause the machine  overheat, it will automatically shut down to protect  from burnout.
 
    3. Automatic control

 Pressure switch automatically controls the start and stop of the machine.
   
   4. Adjustable air pressure
The air pressure can be adjusted to meet the needs of different equipment usage.

   5. Save human power
 
Switch on the air compressor can work normally & automatically. It is easy to operate and does not need human to be on duty.
 
 6. Easy maintenance
No need to add any lubricant, easy maintenance after purchase. 

Parts Features
1.Heavy cast iron body: heavy load, long stroke, low fuel consumption, low noise

2.Cylinder: made of high-grade cast iron, strength, good lubricity, wall by the fine honing, wear-resistant, durable

3.Piston ring: good elasticity, excellent wear resistance, low oil consumption, not easy to make the valve group carbon deposition and loss of oil to burn the crankshaft and connecting rod.

4.The crankshaft, connecting rod, piston: well balanced, wear resistance, high strength, smooth running balance.

5.High reliable and durable valve; strong aluminum alloy body, light and heat.

6.The motor provides reliable power, low voltage start up and running performance strong fan cooled motor and body; special shock proof design.

7.Double nozzles, were used to direct the exhaust and pressure exhaust; pressure switch with push button, safe and convenient

8.Oil free,silent,protect-environment,suitable for dental use.
 

Frequency Asked Question

1.Are you the manufacturer or trading company?
We are the manufacturer.

2.Where is your factory?
It is located in HangZhou City,ZHangZhoug Province,China.

3.What’s the terms of trade?
FOB,CFR,CIF or EXW are all acceptable.

4.What’s the terms of payment?
T/T,L/C at sight or cash.

5.What’s the lead time?

In 15 days on receipt of deposit .

6.Do you accept sample order?
Yes,we accept.

7.What about the cost of sample?
 You have to pay the freight charge.But the cost of product could be refundable,if you will purchase 1x20GP container in the future.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: One Year
Warranty: One Year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Samples:
US$ 90/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China Best Sales 8 Oil-Free Heavy Duty Rotary Oil Piston Industrial Single Mini LG Movable Dental Max Portable High Pressure Hot Oilless Screw Part Free AC Air Pump Compressor   with Best SalesChina Best Sales 8 Oil-Free Heavy Duty Rotary Oil Piston Industrial Single Mini LG Movable Dental Max Portable High Pressure Hot Oilless Screw Part Free AC Air Pump Compressor   with Best Sales
editor by CX 2024-03-28

China factory China Gas Compressor and Low Noise Dental Air Compressor air compressor repair near me

Product Description

Product Description:
China Gas Compressor and Low Noise Dental Air Compressor

Technical Parameters:

Voltage

110V/220V 

Frequency

AC 60Hz/50Hz

Ampere

7.5 A

Power

1650W

Volume Flow

162L/min

Rated exhaust pressure

0.8Mpa

Noise

65-70db

Tank Capacity

60L

Gross Weight

67kg

Product Size

88*48*77cm

Advantage:

 

Silent

Low working noise, create a quiet working environment.

Low vibration

With special rubber feet, reduce vibration during operation.

Core technology

Diamond hardness cylinder ensure durable working performance.

Easy operation

Quite simple operation, connect to power supply, just drainage regularly 

Packing & Delivery(100% calibration before shipment)

Our belief: 
We will make every effort to deliver superior value to customers with simple, innovation and quality products
Quality working environment, quality products, close services for the betterment of dentistry worldwide

We’d like to make friends with colleagues from all circles with fine quality products,favorable prices and perfect services and create a beautiful future of the national dentistry industry! ! !

FAQ:

Q1:Are you a company or factory?
Yes,we are a dental equipment manufacturer in HangZhou,China.
Q2:What ‘s your advantage?
KJ Dental founded in 2008,professional dental chair & dental chair spare parts manufacturer. Providing good after-sale service and competitive price.
Q3:What is your warranty?
Have 1 year warranty.If having any problems,you can send us photos,we will give you the spare parts for free.
Q4:How about the delivery days?
It depends on the quantity and model you order. Normally,2-3days.
Q5:What certificates do CHINAMFG have?
We have the ISO 13485:2003, EN ISO13485:2012,our product got the CE certificated. We also have different kinds of certificates and documents to meet with different foreign countries.For more information,pls contact us.

 

Teeth Whitening Method: Laser Whitening
Applicable Departments: Oral Rehabilitation Department
Certification: ISO, CE, ISO13485
Type: Dental Auxiliary Materials
Material: Metal
Warranty: One Year

air compressor

What are the advantages of using rotary vane compressors?

Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:

1. Compact and Lightweight:

Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.

2. High Efficiency:

Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.

3. Quiet Operation:

Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.

4. Oil Lubrication:

Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.

5. Versatile Applications:

Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.

6. Easy Maintenance:

Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.

These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.

air compressor

Can air compressors be used for inflating tires and sporting equipment?

Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:

1. Tire Inflation:

Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.

2. Sporting Equipment Inflation:

Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.

3. Air Tools for Inflation:

Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.

4. Adjustable Pressure:

One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.

5. Efficiency and Speed:

Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.

6. Portable Air Compressors:

For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.

It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China factory China Gas Compressor and Low Noise Dental Air Compressor   air compressor repair near meChina factory China Gas Compressor and Low Noise Dental Air Compressor   air compressor repair near me
editor by CX 2023-10-23

China Hot selling 10m3/Min Silent Oil-Free Air Compressor Laboratory Dental Air Pump with Good quality

Product Description

Product Description

 

Features of the products
Small size, light weight, large exhaust volume, clean gas without oil, easy to install.

Purposes of the products
Can be used to transport cement, grain, lime, plastic, feed and other granular materials and powder materials tank truck, tank ship; It can also be used as an air power source for gas delivery devices.

Machine type HYCW-10/2 Single Cylinder (cast iron model)   
item unit Parameter value
Air displacement m3 / min 10
Exhaust pressure MPa 0.2
Shaft power KW ≤35 
Specific power KW / m3 . min -1 3.5
Inspiratory temperature ºC ≤40 
Exhaust temperature ºC ≤160 
Lubricating oil temperature ºC 65
cleanliness Mg 720
noise Db ( A ) 70
weight KG 225
Rotational speed r / min 980
torque N . M 341
Overall dimension mm (Length * width * height) 976.5 * 620 * 760
Installation position Seated mounting

 

Hot Products

 

Company Profile

 The products cover 31 provinces of china, cities and autonomous regions, and export to more than 50 countries and regions.
 

Packaging & Shipping

FAQ

Q1.Dose your company has your own factory?
A:Yes,we have a factory ourself.which is in this business for 15 years in China.
Our factory is in the trailer base LiangShan,ZheJiang ,China.

Q2. What is your terms of payment?
A: T/T 30% as deposit, and 70% before delivery. We’ll show you the photos of the products and packages before you pay the balance.

Q3. What is your terms of delivery?
A: EXW, FOB, CFR, CIF, DDU.

Q4. How about your delivery time?
A: Generally, it will take 30 to 60 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order.

Q5. Can you produce according to the samples?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6. What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q7. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery

Q8: How do you make our business long-term and good relationship?
A:1. We keep good quality and competitive price to ensure our customers benefit ; 2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.

 

After-sales Service: 7*24 Hours
Warranty: 6 Months
Lubricating Oil Temperature: 65ºC
Overall Dimension: 1070 * 653 * 630mm
Exhaust Temperature: <=160ºC
Noise: 70dB(a)
Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

What is the impact of altitude on air compressor performance?

The altitude at which an air compressor operates can have a significant impact on its performance. Here are the key factors affected by altitude:

1. Decreased Air Density:

As altitude increases, the air density decreases. This means there is less oxygen available per unit volume of air. Since air compressors rely on the intake of atmospheric air for compression, the reduced air density at higher altitudes can lead to a decrease in compressor performance.

2. Reduced Airflow:

The decrease in air density at higher altitudes results in reduced airflow. This can affect the cooling capacity of the compressor, as lower airflow hampers the dissipation of heat generated during compression. Inadequate cooling can lead to increased operating temperatures and potential overheating of the compressor.

3. Decreased Power Output:

Lower air density at higher altitudes also affects the power output of the compressor. The reduced oxygen content in the air can result in incomplete combustion, leading to decreased power generation. As a result, the compressor may deliver lower airflow and pressure than its rated capacity.

4. Extended Compression Cycle:

At higher altitudes, the air compressor needs to work harder to compress the thinner air. This can lead to an extended compression cycle, as the compressor may require more time to reach the desired pressure levels. The longer compression cycle can affect the overall efficiency and productivity of the compressor.

5. Pressure Adjustments:

When operating an air compressor at higher altitudes, it may be necessary to adjust the pressure settings. As the ambient air pressure decreases with altitude, the compressor’s pressure gauge may need to be recalibrated to maintain the desired pressure output. Failing to make these adjustments can result in underinflated tires, improper tool performance, or other issues.

6. Compressor Design:

Some air compressors are specifically designed to handle higher altitudes. These models may incorporate features such as larger intake filters, more robust cooling systems, and adjusted compression ratios to compensate for the reduced air density and maintain optimal performance.

7. Maintenance Considerations:

Operating an air compressor at higher altitudes may require additional maintenance and monitoring. It is important to regularly check and clean the intake filters to ensure proper airflow. Monitoring the compressor’s operating temperature and making any necessary adjustments or repairs is also crucial to prevent overheating and maintain efficient performance.

When using an air compressor at higher altitudes, it is advisable to consult the manufacturer’s guidelines and recommendations specific to altitude operations. Following these guidelines and considering the impact of altitude on air compressor performance will help ensure safe and efficient operation.

air compressor

What is the impact of tank size on air compressor performance?

The tank size of an air compressor plays a significant role in its performance and functionality. Here are the key impacts of tank size:

1. Air Storage Capacity: The primary function of the air compressor tank is to store compressed air. A larger tank size allows for greater air storage capacity. This means the compressor can build up a reserve of compressed air, which can be useful for applications that require intermittent or fluctuating air demand. Having a larger tank ensures a steady supply of compressed air during peak usage periods.

2. Run Time: The tank size affects the run time of the air compressor. A larger tank can provide longer continuous operation before the compressor motor needs to restart. This is because the compressed air in the tank can be used to meet the demand without the need for the compressor to run continuously. It reduces the frequency of motor cycling, which can improve energy efficiency and prolong the motor’s lifespan.

3. Pressure Stability: A larger tank helps maintain stable pressure during usage. When the compressor is running, it fills the tank until it reaches a specified pressure level, known as the cut-out pressure. As the air is consumed from the tank, the pressure drops to a certain level, known as the cut-in pressure, at which point the compressor restarts to refill the tank. A larger tank size results in a slower pressure drop during usage, ensuring more consistent and stable pressure for the connected tools or equipment.

4. Duty Cycle: The duty cycle refers to the amount of time an air compressor can operate within a given time period. A larger tank size can increase the duty cycle of the compressor. The compressor can run for longer periods before reaching its duty cycle limit, reducing the risk of overheating and improving overall performance.

5. Tool Compatibility: The tank size can also impact the compatibility with certain tools or equipment. Some tools, such as high-demand pneumatic tools or spray guns, require a continuous and adequate supply of compressed air. A larger tank size ensures that the compressor can meet the air demands of such tools without causing pressure drops or affecting performance.

It is important to note that while a larger tank size offers advantages in terms of air storage and performance, it also results in a larger and heavier compressor unit. Consider the intended application, available space, and portability requirements when selecting an air compressor with the appropriate tank size.

Ultimately, the optimal tank size for an air compressor depends on the specific needs of the user and the intended application. Assess the air requirements, duty cycle, and desired performance to determine the most suitable tank size for your air compressor.

China Hot selling 10m3/Min Silent Oil-Free Air Compressor Laboratory Dental Air Pump   with Good qualityChina Hot selling 10m3/Min Silent Oil-Free Air Compressor Laboratory Dental Air Pump   with Good quality
editor by CX 2023-10-21