Product Description
ZAY-250 185KW CHINAMFG china air compressor manufacturer
ZAKF air compressor belongs to the general equipment category, and is widely used in steel, electric power, metallurgy, shipbuilding, electronics, textile, mining, chemical, petroleum, light industry, paper printing, machinery manufacturing, food and medicine, transportation facilities, casting spraying, and shipping terminals , Automotive industry, military technology, aerospace, infrastructure and other fields
| air compressor digital |
| air compressor diesel |
| air compressor dental |
| air compressor controller |
| air compressor air |
| air compressor 500 litre |
| air compressor 500 liter |
| air compressor 250 bar |
| air compressor 100 liter |
| ac rotary compressor price |
Product Brand
ZAKF import advanced technology from Europe, through constant practice and improvement, design a new generation of “ZAKF” air compressor.
Improved quality assurance manual, advanced production process, control management program files comprehensive, standardized, ensuring high quality brand name products “ZAKF”, stable and durable. High quality, intimate service get the praise from users all over the world.
Why use CHINAMFG screw air compressor?
1.Simple structure, small volume and light weight
2.Reasonable design, convenient to install and move.
3.Customized motor, long life time
4.warranty:air end with 2 years, air compressor with 1 year
5.noise:65db, silent small air compressor
6.customized hose with excellent quality.
Where you use?
Product parameters
| Model Number | Starting System | Driving Mode | Power(KW) | Flow(m³)/Pressure(bar) | Cooling-down Method | Outlet Size | Outline Dimension(l:w:h) | Weight(kg) | Noise dB(A) |
| ZAY-10 | Soft Start | Integrated direct drive | 7.5/10 | 0.36-1.3/7 0.33-1.1/8 0.28-0.95/10 | air cooling | G 3/4” | 800*720*950 | 620 | 62±2 |
| ZAY-15 | Soft Start | Integrated direct drive | 11/15 | 0.51-1.7/7 0.66-2.2/8 0.62-2.0/10 | air cooling | G 3/4” | 950*800*1158 | 450 | 66±2 |
| ZAY-20 | Soft Start | Integrated direct drive | 15/20 | 0.72-2.4/7 0.66-2.2/8 0.62-2.0/10 | air cooling | G 3/4” | 950*800*1158 | 480 | 66±2 |
| ZAY-30 | Soft Start | Integrated direct drive | 22/30 | 1.41-3.8/7 1.1-3.60/8 1.96-3.2/10 | air cooling | G 1” | 1150*880*1360 | 650 | 66±2 |
| ZAY-40 | Soft Start | Integrated direct drive | 30/40 | 1.59-5.6/7 1.50-5.0/8 1.35-4.5/10 | air cooling | G 1” | 1150*880*1360 | 780 | 66±2 |
| ZAY-50 | Soft Start | Integrated direct drive | 37/50 | 2.04-6.8/7 1.86-6.2/8 1.68-5.6/10 | air cooling | G 1 1/2” | 1300*950*1420 | 850 | 68±2 |
| ZAY-60 | Soft Start | Integrated direct drive | 45/60 | 2.22-7.4/7 2.16-7.2/8 2.04-6.8/10 | air cooling | G 1 1/2” | 1300*950*1420 | 880 | 68±2 |
| ZAY-75 | Soft Start | Integrated direct drive | 55/75 | 3.15-10.5/7 2.88-9.6/8 2.79-9.3/10 | air cooling | G 2” | 1600*1170*1580 | 1600 | 69±2 |
| ZAY-100 | Soft Start | Integrated direct drive | 75/100 | 4.18-13.8/7 4.05-13.5/8 3.75-12.5/10 | air cooling | G 2” | 1600*1170*1580 | 1750 | 69±2 |
| ZAY-120 | Soft Start | Integrated direct drive | 90/120 | 4.95-16.5/7 4.59-15.3/8 1.17-13.9/10 | air cooling | G 2” | 1600*1170*1580 | 1950 | 69±2 |
| ZAY-150 | Soft Start | Integrated direct drive | 110/150 | 6.36-21.2/7 5.94-19.8/8 5.58-18.6/10 | air cooling | DN65 | 2500*1470*1840 | 2230 | 75±2 |
| ZAY-175 | Soft Start | Integrated direct drive | 132/175 | 7.29-24.3/7 7.14-23.8/8 6.63-22.1/10 | air cooling | DN65 | 2500*1470*1840 | 2580 | 75±2 |
| ZAY-200 | Soft Start | Integrated direct drive | 160/200 | 8.61-28.7/7 8.28-27.6/8 7.38-24.6/10 | air cooling | DN80 | 2500*1470*1840 | 2880 | 75±2 |
| ZAY-250 | Soft Start | Integrated direct drive | 185/250 | 9.60-32.0/7 9.15-30.5/8 7.25-27.5/10 | air cooling | DN100 | 2800*1900*1950 | 4200 | 78±2 |
| ZAY-300 | Soft Start | Integrated direct drive | 220/300 | 11.0-36.7/7 10.3-34.5/8 9.06-30.2/10 | air cooling | DN100 | 2800*1900*1950 | 4600 | 78±2 |
| ZAY-350 | Soft Start | Integrated direct drive | 250/350 | 12.6-42.0/7 12.1-40.5/8 | air cooling | DN100 | 3300*1900*1950 | 5000 | 78±2 |
Company Information
Company Profile—–Jiubei
Jiubei Industry Co., Ltd was established in 2000. We are a Hi-Techcompany .
specialized in research, development, manufacture and distribution of Air compressor spare parts.
Expect produceing air compressor replacement spare parts , we also supply the maintemance of air compressor .
In 2017, we built screw air compressor factory in HangZhou city, ZheJiang province, it’s the hometown of my boss.
and we get the support from goverment. our first brand is “ZAKF”
Our Services
| All the compressor parts Quality is guaranteed 1 year A full quotation as your required will be offered in 24 hours Service 24 hours a day ,6 days a week Accept your specific order and do everything we can do to meet your requirement |
FAQ
Q1: How can I get the quotation?
A: You can advise us the part number for checking, and we will quote to you soon by email.
Q2:What kind of ways for transportation ?
A:In general by air, sea or Express.(like DHL,Fedex,TNT,etc.)
Q3:How do I know the quality of productions?
A:We have a strict series of quality control, and we have perfect after service system, which can help you to solve the problem soon
Q4: If i want to change model,size,package,etc. How can I do?
A:You can contact us and we will revise according to your requirement
Q5:What is the terms of payment ?
A: L/C, T/T, Paypal(need 5% paypal fee) in advance.
contact me
HongKong CHINAMFG Industry Limited
HangZhou City CHINAMFG Compressor Part Co.,Ltd.
Miss Carrie
Web: cnjiubei
| Lubrication Style: | Lubricated |
|---|---|
| Cooling System: | Air Cooling |
| Power Source: | AC Power |
| Cylinder Position: | Vertical |
| Structure Type: | Closed Type |
| Installation Type: | Stationary Type |
| Customization: |
Available
|
|
|---|
.webp)
How does variable speed drive technology improve air compressor efficiency?
Variable Speed Drive (VSD) technology improves air compressor efficiency by allowing the compressor to adjust its motor speed to match the compressed air demand. This technology offers several benefits that contribute to energy savings and enhanced overall system efficiency. Here’s how VSD technology improves air compressor efficiency:
1. Matching Air Demand:
Air compressors equipped with VSD technology can vary the motor speed to precisely match the required compressed air output. Traditional fixed-speed compressors operate at a constant speed regardless of the actual demand, leading to energy wastage during periods of lower air demand. VSD compressors, on the other hand, ramp up or down the motor speed to deliver the necessary amount of compressed air, ensuring optimal energy utilization.
2. Reduced Unloaded Running Time:
Fixed-speed compressors often run unloaded during periods of low demand, where they continue to consume energy without producing compressed air. VSD technology eliminates or significantly reduces this unloaded running time by adjusting the motor speed to closely follow the air demand. As a result, VSD compressors minimize energy wastage during idle periods, leading to improved efficiency.
3. Soft Starting:
Traditional fixed-speed compressors experience high inrush currents during startup, which can strain the electrical system and cause voltage dips. VSD compressors utilize soft starting capabilities, gradually ramping up the motor speed instead of instantly reaching full speed. This soft starting feature reduces mechanical and electrical stress, ensuring a smooth and controlled startup, and minimizing energy spikes.
4. Energy Savings at Partial Load:
In many applications, compressed air demand varies throughout the day or during different production cycles. VSD compressors excel in such scenarios by operating at lower speeds during periods of lower demand. Since power consumption is proportional to motor speed, running the compressor at reduced speeds significantly reduces energy consumption compared to fixed-speed compressors that operate at a constant speed regardless of the demand.
5. Elimination of On/Off Cycling:
Fixed-speed compressors often use on/off cycling to adjust the compressed air output. This cycling can result in frequent starts and stops, which consume more energy and cause mechanical wear. VSD compressors eliminate the need for on/off cycling by continuously adjusting the motor speed to meet the demand. By operating at a consistent speed within the required range, VSD compressors minimize energy losses associated with frequent cycling.
6. Enhanced System Control:
VSD compressors offer advanced control capabilities, allowing for precise monitoring and adjustment of the compressed air system. These systems can integrate with sensors and control algorithms to maintain optimal system pressure, minimize pressure fluctuations, and prevent excessive energy consumption. The ability to fine-tune the compressor’s output based on real-time demand contributes to improved overall system efficiency.
By utilizing variable speed drive technology, air compressors can achieve significant energy savings, reduce operational costs, and enhance their environmental sustainability by minimizing energy wastage and optimizing efficiency.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2023-10-25