Tag Archives: high pressure compressor

China Best Sales Hot Sales Shang Air 40bar 30HP 4.0MPa High Medium Pressure Piston Air Compressor portable air compressor

Product Description

Piston air compressor
,
A piston type air compressor is a type of reciprocating air compressor, whose compression component is a piston, which reciprocates inside the cylinder and moves with the same gas as the piston. Derivative products include air compressors, assembly line equipment, plastic machines, fans,etc.
 
Basic composition of piston air compressor:

1. Exhaust valve  2. Cylinder  3. Piston  4. Piston rod  5. Slider  6. Connecting rod  7. Crane 8. Suction valve  9. Valve spring

 operational principle

    When the reciprocating piston in the cylinder moves to the right, the pressure in the left chamber of the piston in the cylinder is lower than atmospheric pressure pa, the suction valve opens, and external air is sucked into the cylinder. This process is called compression. When the pressure in the cylinder is higher than the pressure p in the output air pipeline, the exhaust valve opens. The process of compressed air being sent into the gas pipeline is called the exhaust process. The reciprocating motion of the piston is formed by a crank slider mechanism driven by an electric motor. The rotational motion of the crank is converted into sliding – the reciprocating motion of the piston.

83SH (Vertical double machine) Series:
Air discharge  :2.0-6.0Nm3/min
Discharge pressure:4.0Mpa
installed capacity:30HP×2(22 KW ×2) 

Series Model Air discharge (Nm3/min) Discharge pressure(Mpa) Motor Power(kw) Weight
(kg)
Size
length×width×height(mm)
83SH 83SH-2240 2.0 4.0 22 680 1800*1571*1050
3710*1100*1200
2-83SH-2240 4.0 4.0 22*2 1550

Packaging & Shipping

Certifications

Company Profile

                                                                 FAQ

Q1: How many coutries you already exported?
A: Exported to more than 50 countries mainly from America,Russia,Brazil,Bangladesh,Egypt,Kuwait,Turkey,Jordan,Dubai,Iran,Peru,India,Malaysia,Vietnam,Indonesia,Singapore etc.

Q2: Is it OK to print my logo on products ?
A: Yes , OEM and ODM are available for us.

Q3: How could you guarantee your products ?
A: Each piece of products is manufactured by certified workshops, inspected by piece according to national QA/QC standard. We also could issue the warranty to customer to guarantee the quality.

Q4: Can we visit your factory before order?
A: Sure, we warmly welcome you to visit our factory at any time. The more you know us, the more you trust us! So you can rest assured on our quality products and our best services.

Q5: Will you delivery the goods on time?
A: Yes,we promise to deliver on time,indemnity clause in contact.

After-sales Service: 1 Year
Warranty: 1 Year
Lubrication Style: Oil-less
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you troubleshoot common air compressor problems?

Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:

1. No Power:

  • Check the power source and ensure the compressor is properly plugged in.
  • Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
  • Verify that the compressor’s power switch or control panel is turned on.

2. Low Air Pressure:

  • Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
  • Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
  • Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.

3. Excessive Noise or Vibration:

  • Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
  • Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
  • Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.

4. Air Leaks:

  • Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
  • Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
  • Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.

5. Excessive Moisture in Compressed Air:

  • Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
  • Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
  • Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.

6. Motor Overheating:

  • Ensure the compressor’s cooling system is clean and unobstructed.
  • Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
  • Verify that the compressor is not being operated in an excessively hot environment.
  • Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
  • Consider using a thermal overload protector to prevent the motor from overheating.

If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Best Sales Hot Sales Shang Air 40bar 30HP 4.0MPa High Medium Pressure Piston Air Compressor   portable air compressorChina Best Sales Hot Sales Shang Air 40bar 30HP 4.0MPa High Medium Pressure Piston Air Compressor   portable air compressor
editor by CX 2023-12-12

China best Luy120-14 14 Bar 424 Cfm 129 Kw High Pressure Air Compressor Screw Air Compressor on Sale with Good quality

Product Description

Model Name LUY050-7 LUY085-14 LUY100-10 LUY100-12 LUY118-7 LUY120-14 LUY130-13 LUY150-15 LUY160-17 LUY235-9 LUY220-10
Working pressure, bar(psi) 7 (100) 14 (205) 10 (150) 12 (175) 7 (100) 14 (205) 13(190) 15 (220) 17 (250) 8.6 (125) 10 (150)
Flow, l/s|cfm|m3/min 83|177|5 142|300|8.5 167|353|10 167|353|10 197|420|11.8 200|424|12 217|460|13 250|530|15 267|565|16 396|830|23.5 367|780|22
Noise sound level (at 7m distance, dBA ) 70±3 79±3 79±3 79±3 79±3 83±3 83±3 83±3 83±3 79±3 79±3
Fuel tank capacity, l 67 185 120 120 120 180 180 250 250 300 300
Compressor oil capacity, l 8 25 26 26 26 23 30 32 32 55 55
Outlet valves, qty x size 3xG3/4 3xG3/4 1xG1  1/2 3xG3/4 1xG1  1/3 3xG3/4 1xG1  1/4 3xG3/4 1xG1  1/5 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission           Tier 3 Tier 3 Tier 3 Tier 3 Tier 2 Tier 2
Engine maker Kubota Cummins Cummins Cummins Cummins Yuchai Cummins Yuchai Yuchai Cummins Cummins
Engine model V1505T 4BTAA3.9-C125 YC4A130-H311 YC4A130-H311 YC4A130-H311 YC6J175-H301 QSB5.9-C180-31 YC6A205-H300 YC6A240-H301 6CTA8.3-C260 6CTA8.3-C260
Engine power, Kw 33 93 96 96 96 129 132 151 176 194 194
Norminal engine speed, rpm 2950 2300 2300 2300 2300 2300 2400 2050 1950 2000 2000
Unloading engine speed, rpm 1950 1500 1400 1400 1400 1400 1400 1200 1200 1500 1500
Engine inspiration torbue charger torbue charger torbue charger torbue charger torbue charger torbue torbue torbue torbue torbue torbue
Length, mm 2960 3700 3700 3700 3700 4322 3000 4322 4322 3780 3780
Width, mm 1350 1790 1790 1790 1790 1950 2000 1950 1950 1950 1950
Height, mm 1420 1900 1900 1900 1900 1980 2190 1980 1980 2260 2260
Weight, kg 750 1650 1650 1650 1650 2250 1990 2550 2550 2990 2990

 

Model Name LUY200-10 LUY170-17 LUY180-19 LUY180-20 LUY210-17 LUY230-14 LUY250-12 LUY270-10 LUY290-9 LUY215-21 LUY290-23
Working pressure, bar(psi) 10(150) 17(250) 19 (275) 20(290) 17 (250) 14 (205) 12(175) 10(150) 8.6(125) 21(305) 23(335)
Flow, l/s|cfm|m3/min 336|706|20 286|600|17 300|635|18 300|635|18 350|745|21 386|815|23 417|885|25 450|955|27 486|1571|29 357|760|21.5 486|1571|29
Noise sound level (at 7m distance, dBA ) 79±3 79±3 83±3 83±3 83±3 79±3 79±3 79±3 79±3 79±3 83±3
Fuel tank capacity, l 300 300 300 325 300 470 470 470 470 512 500
Compressor oil capacity, l 55 55 55 60 55 65 65 65 65 75 75
Outlet valves, qty x size 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4 1*G2 1*G3/4
Engine exhuast emission Tier 2 Tier 2 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3 Tier 3
Engine maker Cummins Cummins Yuchai Cummins Yuchai Cummins Cummins Cummins Cummins Cummins Yuchai
Engine model 6CTA8.3-C260 6CTA8.3-C260 YC6A260-H300 QSB6.7-C260-32 YC6A260-H300 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 QSL8.9-C325-30 YC6MK340-H300
Engine power, Kw 194 194 191 191 191 242 242 242 242 242 250
Norminal engine speed, rpm 2000 2000 1900 2000 1900 2000 2000 2000 2000 2000 1900
Unloading engine speed, rpm 1500 1500 1200 1300 1200 1300 1300 1300 1300 1300 1300
Engine inspiration torbue torbue torbue torbue torbue torbue torbue torbue charger torbue charger torbue charger torbue
Length, mm 3780 3780 4404 4550 4404 5260 5260 5260 5260 5260 3850
Width, mm 1950 1950 1950 1770 1950 1800 1800 1800 1800 2040 2100
Height, mm 2260 2260 2296 2230 2270 2630 2630 2630 2630 2630 2690
Weight, kg 2990 2990 3330 3920 3330 4835 4835 4835 4835 4850 4100

 

 

After-sales Service: Video Technical Support, Online Support, Spare PAR
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: Diesel Engine
Cylinder Position: /
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

What safety precautions should be taken when working with compressed air?

Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:

1. Personal Protective Equipment (PPE):

Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.

2. Compressed Air Storage:

Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.

3. Pressure Regulation:

Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.

4. Air Hose Inspection:

Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.

5. Air Blowguns:

Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.

6. Air Tool Safety:

Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.

7. Air Compressor Maintenance:

Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.

8. Training and Education:

Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.

9. Lockout/Tagout:

When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.

10. Proper Ventilation:

Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.

By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.

air compressor

Are there portable air compressors available for home use?

Yes, there are portable air compressors specifically designed for home use. These portable models offer convenience, versatility, and ease of use for various tasks around the house. Here are some key points about portable air compressors for home use:

1. Compact and Lightweight: Portable air compressors are typically compact and lightweight, making them easy to transport and store. They are designed with portability in mind, allowing homeowners to move them around the house or take them to different locations as needed.

2. Electric-Powered: Most portable air compressors for home use are electric-powered. They can be plugged into a standard household electrical outlet, eliminating the need for gasoline or other fuel sources. This makes them suitable for indoor use without concerns about emissions or ventilation.

3. Versatile Applications: Portable air compressors can be used for a wide range of home applications. They are commonly used for inflating tires, sports equipment, and inflatable toys. They are also handy for operating pneumatic tools such as nail guns, staplers, and paint sprayers. Additionally, portable air compressors can be used for cleaning tasks, powering airbrushes, and other light-duty tasks around the house.

4. Pressure and Capacity: Portable air compressors for home use typically have lower pressure and capacity ratings compared to larger industrial or commercial models. They are designed to meet the needs of common household tasks rather than heavy-duty applications. The pressure and capacity of these compressors are usually sufficient for most home users.

5. Oil-Free Operation: Many portable air compressors for home use feature oil-free operation. This means they do not require regular oil changes or maintenance, making them more user-friendly and hassle-free for homeowners.

6. Noise Level: Portable air compressors designed for home use often prioritize low noise levels. They are engineered to operate quietly, reducing noise disturbances in residential environments.

7. Cost: Portable air compressors for home use are generally more affordable compared to larger, industrial-grade compressors. They offer a cost-effective solution for homeowners who require occasional or light-duty compressed air applications.

When considering a portable air compressor for home use, it’s important to assess your specific needs and tasks. Determine the required pressure, capacity, and features that align with your intended applications. Additionally, consider factors such as portability, noise level, and budget to choose a suitable model that meets your requirements.

Overall, portable air compressors provide a practical and accessible compressed air solution for homeowners, allowing them to tackle a variety of tasks efficiently and conveniently within a home setting.

China best Luy120-14 14 Bar 424 Cfm 129 Kw High Pressure Air Compressor Screw Air Compressor on Sale   with Good qualityChina best Luy120-14 14 Bar 424 Cfm 129 Kw High Pressure Air Compressor Screw Air Compressor on Sale   with Good quality
editor by CX 2023-12-09

China factory Mch6 Portable Respirator Air Pump High Pressure Air Compressor Scuba Respirator with Great quality

Product Description

Product Image

 

Main parameters

  1. Model:MCH6/EM/ET/SH
  2. Work pressure:30Mpa Mpa(300bar)
  3. Displacement (inhalation state):80~100L/min  L/min
  4. Type:X-type layout-4-cylinder four-stage reciprocating piston compression
  5. Drive:Electric 220V/50Hz/2.2kw or 380V/50Hz/3kw or Honda gasoline engine drive
  6. Lubrication method:Splash lubrication
  7. Cooling method:Air-cooled
  8. Control method:Manual shutdown or (optional to automatically shut down to pressure)
  9. Clean air:1 air filtration, 1 oil-water separation, 1 air purification
  10. Safety devices:Final stage installation valve, transmission part installation protective cover
  11. Packing size (length×width×height): 35×65×39cm
  12. Weight:39kg
  13. Inflation speed:It takes about 22 minutes to fill a 6-liter bottle with 30Mpa
  14. Certified product:CE certification, MA test report
  15. Packing List:Instructions, safety inspection report certificate, 1 set of inflation hoses and joints, 1 bottle of standard lubricating oil.

Working principle

Pure air through an air filter (1) after filtration, enters into the first-stage cylinder through (2) the first-stage cylinder intake valve, and after being compressed by the first-stage cylinder, passes through (3) the first-stage cylinder exhaust valve and enters (4) the first-stage cylinder Cooler, the cooled gas enters the second-stage cylinder, the compressed gas enters (6) the second-stage cooler through (5), the cooled gas enters the third-stage cylinder, and after being compressed by the third-stage cylinder, enters (7) ( 8) Three-stage cooler, the cooled gas enters the four-stage cylinder, the gas compressed by the four-stage cylinder enters (10) the four-stage cooler through (9), and the compressed and cooled gas enters (11) the oil-water condenser , Enter (15) activated carbon molecular sieve filter, the filtered pure air is discharged through (16) hose. (12) Pressure gauge (13) Safety valve (14) Connecting pipe.

This product is mass-produced in accordance with the optimization of the Italian model. The final piston adopts a special process, the piston ring adopts the Japanese Riken process, and all casting products are cast in a large-scale outsourcing factory. The product has been on the market for more than 10 years and has won the consensus of users. Praise. This product adopts four-cylinder four-stage compression, splash lubrication, last-stage safety valve and filter system. MCH6 can provide safe compressed air for any industry that requires high-pressure pure air source, and provide safe compressed air that meets the requirements of human breathing. This product is designed, produced and tested and accepted in accordance with the requirements of GB/T 12929-2008 “Marine High Pressure Piston Air Compressor”; the air quality meets the EN12571 international breathing compressor breathing standard; MCH6 is an air compression device that will be in a free state 1 kg of air (1bar/0.1Mpa), compressed to a gauge pressure of 300 kg (300bar/30Mpa) of high-pressure gas. After the air flows through the separator and filter in the unit, the high-pressure air is removed The oil and impurities in the air can filter the inhaled air containing fine particles (PM2.5) below the safety value of 10 micrograms, which meets the standards set by the World Health Organization, so that the exhaust gas is clean and tasteless, providing personnel with Highly purified, clean, odorless, safe and reliable compressed breathing air.

Product composition and characteristics

The rotating part is equipped with a protective cover device to ensure the safety of the operator;
High-strength nylon cooling fan, better heat dissipation effect;
Four-cylinder four-stage compression, low compression ratio, reliable performance;
Motor drive or gasoline engine drive to meet the gas supply demand under various conditions;
Splash-type high-efficiency lubrication;
Air filter (paper filter element)
Oil-water separator (standard with manual blowdown)
Air purification system (standard manual sewage discharge) activated carbon, molecular sieve, carbon monoxide absorption molecules constitute a triple breathing air purification system, reusable packing cartridges, simple and convenient replacement, saving costs
Manual shutdown function (optional automatic shutdown)
Final safety valve, automatic discharge of overpressure
Shockproof pressure gauge 0~5800psi/400bar
The compressor base is made finely and durable;
Stainless steel cooling system;

Main application

                                           Diving cylinder filling                                       Fire gas cylinder filling

Fire-fighting breathing application: equipped in the gas supply stations of the fire brigade or various fire-fighting vehicles to provide emergency gas supply at the scene of a fire or in the rescue and relief process, so that the majority of firefighters will be exposed to heavy smoke, poisonous gas, steam or lack of oxygen. In this environment, you can breathe highly purified, clean, odorless, safe and reliable compressed air, thus ensuring that fire extinguishers can safely and effectively carry out fire fighting, rescue, disaster relief, and rescue.
Diving breathing applications: diving clubs, diving enthusiasts, marine breeding, sea rescue, ship equipment, underground operations, fishery fishing, aquaculture, sunken object salvage, underwater engineering, water parks, shipbuilding and other industries, providing high Purified, clean, odorless, safe and reliable compressed breathing air. In an environment that cannot meet the requirements of the human body for normal breathing, the air is filled into a high-pressure gas cylinder for human breathing.

Product display

FAQ

 

Q1: If you accept small orders?
A1: Yes , feel free to contact us

Q2: Can you send products to my country?
A2: Sure, we can. If you do not have your own ship forwarder, we can help you.

Q3: Can you do OEM for me?
A3: YES, OEM is welcomed .

Q4: What’s your payment terms ?
A4: By T/T,LC AT SIGHT,30% deposit in advance, balance 70% before shipment.

Q5: How can I place the order?
A5: First CHINAMFG the PI,pay deposit,then we will arrange the production.After finished production need you pay balance. Finally we will ship the Goods.

Q6: When can I get the quotation ?
A6: We usually quote you within 24 hours after we get your inquiry. If you are very urgent to get the quotation.Please call us or tell us in your mail, so that we could regard your inquiry priority.

 

 

 

After-sales Service: 18 Months
Warranty: 18 Months
Principle: Reciprocating Compressor
Performance: Low Noise, Explosion-Proof
Mute: Not Mute
Lubrication Style: Lubricated
Customization:
Available

|

air compressor

Are there special considerations for air compressor installations in remote areas?

Yes, there are several special considerations to take into account when installing air compressors in remote areas. These areas often lack access to infrastructure and services readily available in urban or well-developed regions. Here are some key considerations:

1. Power Source:

Remote areas may have limited or unreliable access to electricity. It is crucial to assess the availability and reliability of the power source for operating the air compressor. In some cases, alternative power sources such as diesel generators or solar panels may need to be considered to ensure a consistent and uninterrupted power supply.

2. Environmental Conditions:

Remote areas can present harsh environmental conditions that can impact the performance and durability of air compressors. Extreme temperatures, high humidity, dust, and corrosive environments may require the selection of air compressors specifically designed to withstand these conditions. Adequate protection, insulation, and ventilation must be considered to prevent damage and ensure optimal operation.

3. Accessibility and Transport:

Transporting air compressors to remote areas may pose logistical challenges. The size, weight, and portability of the equipment should be evaluated to ensure it can be transported efficiently to the installation site. Additionally, the availability of suitable transportation infrastructure, such as roads or air transportation, needs to be considered to facilitate the delivery and installation process.

4. Maintenance and Service:

In remote areas, access to maintenance and service providers may be limited. It is important to consider the availability of trained technicians and spare parts for the specific air compressor model. Adequate planning for routine maintenance, repairs, and troubleshooting should be in place to minimize downtime and ensure the longevity of the equipment.

5. Fuel and Lubricants:

For air compressors that require fuel or lubricants, ensuring a consistent and reliable supply can be challenging in remote areas. It is necessary to assess the availability and accessibility of fuel or lubricant sources and plan for their storage and replenishment. In some cases, alternative or renewable fuel options may need to be considered.

6. Noise and Environmental Impact:

Remote areas are often characterized by their natural beauty and tranquility. Minimizing noise levels and environmental impact should be a consideration when installing air compressors. Selecting models with low noise emissions and implementing appropriate noise reduction measures can help mitigate disturbances to the surrounding environment and wildlife.

7. Communication and Remote Monitoring:

Given the remote location, establishing reliable communication channels and remote monitoring capabilities can be essential for effective operation and maintenance. Remote monitoring systems can provide real-time data on the performance and status of the air compressor, enabling proactive maintenance and troubleshooting.

By addressing these special considerations, air compressor installations in remote areas can be optimized for reliable operation, efficiency, and longevity.

air compressor

How are air compressors used in refrigeration and HVAC systems?

Air compressors play a vital role in refrigeration and HVAC (Heating, Ventilation, and Air Conditioning) systems, providing the necessary compression of refrigerant gases and facilitating the heat transfer process. Here are the key ways in which air compressors are used in refrigeration and HVAC systems:

1. Refrigerant Compression:

In refrigeration systems, air compressors are used to compress the refrigerant gas, raising its pressure and temperature. This compressed gas then moves through the system, where it undergoes phase changes and heat exchange to enable cooling or heating. The compressor is the heart of the refrigeration cycle, as it pressurizes and circulates the refrigerant.

2. Refrigeration Cycle:

The compression of refrigerant gas by the air compressor is an essential step in the refrigeration cycle. After compression, the high-pressure, high-temperature gas flows to the condenser, where it releases heat and condenses into a liquid. The liquid refrigerant then passes through an expansion valve or device, which reduces its pressure and temperature. This low-pressure, low-temperature refrigerant then enters the evaporator, absorbing heat from the surrounding environment and evaporating back into a gas. The cycle continues as the gas returns to the compressor for re-compression.

3. HVAC Cooling and Heating:

In HVAC systems, air compressors are used to facilitate cooling and heating processes. The compressor compresses the refrigerant gas, which allows it to absorb heat from the indoor environment in the cooling mode. The compressed gas releases heat in the outdoor condenser unit and then circulates back to the compressor to repeat the cycle. In the heating mode, the compressor reverses the refrigeration cycle, absorbing heat from the outdoor air or ground source and transferring it indoors.

4. Air Conditioning:

Air compressors are an integral part of air conditioning systems, which are a subset of HVAC systems. Compressed refrigerant gases are used to cool and dehumidify the air in residential, commercial, and industrial buildings. The compressor pressurizes the refrigerant, initiating the cooling cycle that removes heat from the indoor air and releases it outside.

5. Compressor Types:

Refrigeration and HVAC systems utilize different types of air compressors. Reciprocating compressors, rotary screw compressors, and scroll compressors are commonly used in these applications. The selection of the compressor type depends on factors such as system size, capacity requirements, efficiency, and application-specific considerations.

6. Energy Efficiency:

Efficient operation of air compressors is crucial for refrigeration and HVAC systems. Energy-efficient compressors help minimize power consumption and reduce operating costs. Additionally, proper compressor sizing and system design contribute to the overall energy efficiency of refrigeration and HVAC systems.

By effectively compressing refrigerant gases and facilitating the heat transfer process, air compressors enable the cooling and heating functions in refrigeration and HVAC systems, ensuring comfortable indoor environments and efficient temperature control.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China factory Mch6 Portable Respirator Air Pump High Pressure Air Compressor Scuba Respirator   with Great qualityChina factory Mch6 Portable Respirator Air Pump High Pressure Air Compressor Scuba Respirator   with Great quality
editor by CX 2023-12-04

China factory Best Selling Automotic Tools High Pressure Air Compressor air compressor parts

Product Description

Product Description

Voltage 220V/50Hz
Current 20.4A
Power 1450W
Rotating speed 2800R/Min
Noise level 88db
Working pressure 0.7Mpa
Max. working pressure 0.8Mpa
Opening pressure of safety valve 0.88Mpa
Restart pressure 0.5Mpa
Working pressure range 0-0.8Mpa
Outlet connector G1/4 G1/2
Tank capacity 120L
Weight 68kg
Tank size 350x800mm

Detailed Photos

Our Factory

Application

Company Profile

HangZhou CHINAMFG AUTOMOBILE TECHNOLOGY CO.,LTD. was founded in 1996, which is
located in HangZhou city. It specializes in auto body repair system, auto lift and tire equipment with
technology development, product development, production, sales and service.

 

Our company has passed the ISO9001, and our products has got CE approved, now we have
some national patents, which show that we have a professional R&D Team. Our auto body repair
system has been widely exported all over the world and are widely used in various domestic and
foreign repair shops and 4S vehicle maintenance stations. We has participated in domestic
professional equipment exhibitions and global body repairs in Las Vegas for several years. The
Equipment Exhibition (NACE) has won unanimous praise and has become a world-renowned
professional equipment manufacturer.

 

Welcome you choose “JINTUO” brand, We will provide you with our heart.

FAQ

Q: How do you control your production quality?
A: We have an independent QC team. Our QC teams do sample inspection, part inspection during
production and 100% final inspection before delivery.

Q: Can I have a visit to your company before placing an order?
A: Sure, welcome to visit CHINAMFG AUTO TECH. There is a showroom in our factory, you can get all
what you want about the auto equipment.

Q: May I know the Lead time?
A:The lead time of our machine is 7 to 20 days.

Q: What is your payment terms?
We accept Alibaba Trade Assurance, TT, LC, etc.

Q: Can you provide the whole workshop automotive equipment?
A: Yes. we have 8 series of product contains nearly all kinds of automotive equipment. Also we have
helped many customers to open their body shop.

Q: How long is the warranty?
A: Our warranty period is 18 months,we will send free parts for replacement within it, and supply spare
parts for lifetime.

Q: Are you a factory?
A: CHINAMFG has invested a factory with an area of 12,000 square meters, specializing in the production of
various frame machine, car lift,wheel alignment,car wash machine etc.

After-sales Service: Technical Support
Warranty: 18 Months
Lubrication Style: Oil-less
Cooling System: Air Cooling
Cylinder Arrangement: Duplex Arrangement
Cylinder Position: Vertical
Samples:
US$ 760/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

Are there differences between single-stage and two-stage air compressors?

Yes, there are differences between single-stage and two-stage air compressors. Here’s an in-depth explanation of their distinctions:

Compression Stages:

The primary difference between single-stage and two-stage air compressors lies in the number of compression stages they have. A single-stage compressor has only one compression stage, while a two-stage compressor has two sequential compression stages.

Compression Process:

In a single-stage compressor, the entire compression process occurs in a single cylinder. The air is drawn into the cylinder, compressed in a single stroke, and then discharged. On the other hand, a two-stage compressor utilizes two cylinders or chambers. In the first stage, air is compressed to an intermediate pressure in the first cylinder. Then, the partially compressed air is sent to the second cylinder where it undergoes further compression to reach the desired final pressure.

Pressure Output:

The number of compression stages directly affects the pressure output of the air compressor. Single-stage compressors typically provide lower maximum pressure levels compared to two-stage compressors. Single-stage compressors are suitable for applications that require moderate to low air pressure, while two-stage compressors are capable of delivering higher pressures, making them suitable for demanding applications that require greater air pressure.

Efficiency:

Two-stage compressors generally offer higher efficiency compared to single-stage compressors. The two-stage compression process allows for better heat dissipation between stages, reducing the chances of overheating and improving overall efficiency. Additionally, the two-stage design allows the compressor to achieve higher compression ratios while minimizing the work done by each stage, resulting in improved energy efficiency.

Intercooling:

Intercooling is a feature specific to two-stage compressors. Intercoolers are heat exchangers placed between the first and second compression stages. They cool down the partially compressed air before it enters the second stage, reducing the temperature and improving compression efficiency. The intercooling process helps to minimize heat buildup and reduces the potential for moisture condensation within the compressor system.

Applications:

The choice between a single-stage and two-stage compressor depends on the intended application. Single-stage compressors are commonly used for light-duty applications such as powering pneumatic tools, small-scale workshops, and DIY projects. Two-stage compressors are more suitable for heavy-duty applications that require higher pressures, such as industrial manufacturing, automotive service, and large-scale construction.

It is important to consider the specific requirements of the application, including required pressure levels, duty cycle, and anticipated air demand, when selecting between a single-stage and two-stage air compressor.

In summary, the main differences between single-stage and two-stage air compressors lie in the number of compression stages, pressure output, efficiency, intercooling capability, and application suitability.

air compressor

How do you choose the right size of air compressor for your needs?

Choosing the right size of air compressor is essential to ensure optimal performance and efficiency for your specific needs. Here are some factors to consider when selecting the appropriate size:

1. Air Demand: Determine the air demand requirements of your applications. Calculate the total CFM (Cubic Feet per Minute) needed by considering the air consumption of all the pneumatic tools and equipment that will be operated simultaneously. Choose an air compressor with a CFM rating that meets or exceeds this total demand.

2. Pressure Requirements: Consider the required operating pressure for your applications. Check the PSI (Pounds per Square Inch) rating of the tools and equipment you will be using. Ensure that the air compressor you choose can deliver the necessary pressure consistently.

3. Duty Cycle: Evaluate the duty cycle of the air compressor. The duty cycle represents the percentage of time the compressor can operate within a given time period without overheating or experiencing performance issues. If you require continuous or heavy-duty operation, choose a compressor with a higher duty cycle.

4. Power Source: Determine the available power source at your location. Air compressors can be powered by electricity or gasoline engines. Ensure that the chosen compressor matches the available power supply and consider factors such as voltage, phase, and fuel requirements.

5. Portability: Assess the portability requirements of your applications. If you need to move the air compressor frequently or use it in different locations, consider a portable or wheeled compressor that is easy to transport.

6. Space and Noise Constraints: Consider the available space for installation and the noise restrictions in your working environment. Choose an air compressor that fits within the allocated space and meets any noise regulations or requirements.

7. Future Expansion: Anticipate any potential future expansions or increases in air demand. If you expect your air demand to grow over time, it may be wise to choose a slightly larger compressor to accommodate future needs and avoid the need for premature replacement.

8. Budget: Consider your budgetary constraints. Compare the prices of different air compressor models while ensuring that the chosen compressor meets your specific requirements. Keep in mind that investing in a higher-quality compressor may result in better performance, durability, and long-term cost savings.

By considering these factors and evaluating your specific needs, you can choose the right size of air compressor that will meet your air demand, pressure requirements, and operational preferences, ultimately ensuring efficient and reliable performance.

China factory Best Selling Automotic Tools High Pressure Air Compressor   air compressor partsChina factory Best Selling Automotic Tools High Pressure Air Compressor   air compressor parts
editor by CX 2023-11-20

China best Hight Quality Laser Cutting Construction High Pressure Variable Frequency Screw Air Compressor lowes air compressor

Product Description

 

Product Description

Detailed Photos

Product Parameters

Model KAPM-30A-20
Power(KW) 22
Pressure(Bar) 20
Volume flow(m3/min) 1.7
Pipe Diameter G1
Weight(kg) 420/690
Dimension(mm) 1070×850×1140mm
1800×850×1930mm(combined type)

 

Certifications

Packaging & Shipping

Installation Instructions

Company Profile

    ZheJiang Kingair Industrial Co., Ltd., is the core technology solution provider for compressed gas system solutions, with mature operation experience and excellent brand reputation in the 3 major areas : product system, core technology and solutions.

    The company has strong comprehensive strength, the factory is located in Xihu (West Lake) Dis., ZheJiang , covers an area of 30000 square meters, has a strong equipment production capacity. In the course of 20 years of operation and development, we have always adhered to the enterprise spirit of
“professionalism, innovation, energy saving and service”, deeply implemented the strategic policy of environmental protection and low carbon, and realized the construction of high intelligent and efficient air pressure system industry chain.

    Kingair focuses on R&D, production and trade, and produces air compressor products with stable overall performance, advanced control system, superior, gas environment, reasonable design, higher efficiency and longer service life.

    Each product of the company has passed the IS09000 quality management system certification, European CE, ISO certification, etc., and has established a complete set of mature foreign trade operation system. The products are popular in more than 80 countries and regions in Asia, Europe,Africa and America.

 

FAQ

Q1. Is KINGAIR trading company or manufacturer ?
A: We are professional manufacturer of screw air compressor, more than 20 years experience.

Q2. How long is KINGAIR delivery time ?
A: KINGAIR standard delivery time is 15 working days after confirmed order.For the other non-standard requirements will be discussed case by case.

Q3. How about your after-sales service?
A: 1. Provide customers with installation and commissioning online instructions.
2. Well-trained engineers available to overseas service.
3. CHINAMFG agents and after service available arrange our engineers to help you training and installation.

Q4. What is the available voltage KINGAIR compressor?
A:KINGAIR available voltage include 380v/50hz/3p,400v/50hz/3p,415v/50hz/3p,220v/60hz/3p,440v/60hz/3p,And
KIGNAIR also supplies the required voltage.

Q5. Do you have any certificate ?
A: Yes, according to customer’s market need, we can offer CE certificate, ISO certificate, etc.

Q6. Do you offer OEM service ?
A: Yes, both OEM & ODM service can be accepted.

Q7. Can KINGAIR machines be run in high temperature environment?What is working temperature range?
A: Yes, KINGAIR machines would run in high temperature environment countries.Such as India, UAE,South Africa, Saudi Arabia, Iraq, Pakistan,etc.
 

After-sales Service: on Line Technical Support
Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Samples:
US$ 4300/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the role of air compressors in power generation?

Air compressors play a significant role in power generation, supporting various operations and equipment within the industry. Here are some key roles of air compressors in power generation:

1. Combustion Air Supply:

Air compressors are used to supply compressed air for the combustion process in power generation. In fossil fuel power plants, such as coal-fired or natural gas power plants, compressed air is required to deliver a steady flow of air to the burners. The compressed air helps in the efficient combustion of fuel, enhancing the overall performance and energy output of the power plant.

2. Instrumentation and Control:

Air compressors are utilized for instrumentation and control systems in power generation facilities. Compressed air is used to operate pneumatic control valves, actuators, and other pneumatic devices that regulate the flow of steam, water, and gases within the power plant. The reliable and precise control provided by compressed air ensures efficient and safe operation of various processes and equipment.

3. Cooling and Ventilation:

In power generation, air compressors are involved in cooling and ventilation applications. Compressed air is used to drive air-operated cooling fans and blowers, providing adequate airflow for cooling critical components such as generators, transformers, and power electronics. The compressed air also assists in maintaining proper ventilation in control rooms, substations, and other enclosed spaces, helping to dissipate heat and ensure a comfortable working environment.

4. Cleaning and Maintenance:

Air compressors are employed for cleaning and maintenance tasks in power generation facilities. Compressed air is utilized to blow away dust, dirt, and debris from equipment, machinery, and electrical panels. It helps in maintaining the cleanliness and optimal performance of various components, reducing the risk of equipment failure and improving overall reliability.

5. Pneumatic Tools and Equipment:

In power generation plants, air compressors provide the necessary compressed air for operating pneumatic tools and equipment. These tools include impact wrenches, pneumatic drills, grinders, and sandblasting equipment, which are utilized for installation, maintenance, and repair tasks. The high-pressure air generated by compressors enables efficient and reliable operation of these tools, enhancing productivity and reducing manual effort.

6. Nitrogen Generation:

Sometimes, air compressors are used in power generation for nitrogen generation. Compressed air is passed through a nitrogen generator system, which separates nitrogen from other components of air, producing a high-purity nitrogen gas stream. Nitrogen is commonly used in power plant applications, such as purging systems, blanketing in transformers, and generator cooling, due to its inert properties and low moisture content.

7. Start-up and Emergency Systems:

Air compressors are an integral part of start-up and emergency systems in power generation. Compressed air is utilized to power pneumatic starters for gas turbines, providing the initial rotation needed to start the turbine. In emergency situations, compressed air is also used to actuate emergency shutdown valves, safety systems, and fire suppression equipment, ensuring the safe operation and protection of the power plant.

Overall, air compressors contribute to the efficient and reliable operation of power generation facilities, supporting combustion processes, control systems, cooling, cleaning, and various other applications critical to the power generation industry.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What are the safety considerations when operating an air compressor?

Operating an air compressor requires careful attention to safety to prevent accidents, injuries, and equipment damage. Here are some important safety considerations to keep in mind:

1. Read the Manual: Before operating an air compressor, thoroughly read and understand the manufacturer’s instruction manual. Familiarize yourself with the specific safety guidelines, recommended operating procedures, and any specific precautions or warnings provided by the manufacturer.

2. Proper Ventilation: Ensure that the area where the air compressor is operated has adequate ventilation. Compressed air can produce high levels of heat and exhaust gases. Good ventilation helps dissipate heat, prevent the buildup of fumes, and maintain a safe working environment.

3. Personal Protective Equipment (PPE): Always wear appropriate personal protective equipment, including safety glasses or goggles, hearing protection, and non-slip footwear. Depending on the task, additional PPE such as gloves, a dust mask, or a face shield may be necessary to protect against specific hazards.

4. Pressure Relief: Air compressors should be equipped with pressure relief valves or devices to prevent overpressurization. Ensure that these safety features are in place and functioning correctly. Regularly inspect and test the pressure relief mechanism to ensure its effectiveness.

5. Secure Connections: Use proper fittings, hoses, and couplings to ensure secure connections between the air compressor, air tools, and accessories. Inspect all connections before operation to avoid leaks or sudden hose disconnections, which can cause injuries or damage.

6. Inspect and Maintain: Regularly inspect the air compressor for any signs of damage, wear, or leaks. Ensure that all components, including hoses, fittings, and safety devices, are in good working condition. Follow the manufacturer’s recommended maintenance schedule to keep the compressor in optimal shape.

7. Electrical Safety: If the air compressor is electric-powered, take appropriate electrical safety precautions. Use grounded outlets and avoid using extension cords unless approved for the compressor’s power requirements. Protect electrical connections from moisture and avoid operating the compressor in wet or damp environments.

8. Safe Start-Up and Shut-Down: Properly start and shut down the air compressor following the manufacturer’s instructions. Ensure that all air valves are closed before starting the compressor and release all pressure before performing maintenance or repairs.

9. Training and Competence: Ensure that operators are adequately trained and competent in using the air compressor and associated tools. Provide training on safe operating procedures, hazard identification, and emergency response protocols.

10. Emergency Preparedness: Have a clear understanding of emergency procedures and how to respond to potential accidents or malfunctions. Know the location of emergency shut-off valves, fire extinguishers, and first aid kits.

By adhering to these safety considerations and implementing proper safety practices, the risk of accidents and injuries associated with operating an air compressor can be significantly reduced. Prioritizing safety promotes a secure and productive working environment.

China best Hight Quality Laser Cutting Construction High Pressure Variable Frequency Screw Air Compressor   lowes air compressorChina best Hight Quality Laser Cutting Construction High Pressure Variable Frequency Screw Air Compressor   lowes air compressor
editor by CX 2023-11-16

China Professional 720L/Min Gasoline/Electric PLC Control System High Pressure Air Compressor Use for Scuba Diving and Firefighting air compressor for sale

Product Description

Our company is a professional high-pressure gas compressor solution provider, which can meet the needs of different customers. As for the high-end demand in the field of medium and high-pressure compressors, and can provides users with customized products and high-quality services.
 

working principle

This product is mass-produced after design changes and optimization in accordance with the German model. The final piston adopts a special process, and the piston ring adopts the Japanese Riken process. Unanimous praise from users. This product adopts four-cylinder four-stage compression, oil pump lubrication, inter-stage safety valve and deep filtration system. HC-X720 can provide safe compressed air for any industry that requires high-pressure pure air source, and provide safe compressed air that meets the requirements of human breathing. This product is designed, produced and tested and accepted in accordance with the requirements of GB/T 12929-2008 “Marine High Pressure Piston Air Compressor”; the air quality meets the EN12571 international breathing compressor breathing standard; HC-X720 is a kind of air compression equipment, which will be free 1 kg (1bar/0.1Mpa) of air in the state is compressed to a high-pressure gas of 330 kg (330bar/33Mpa) gauge pressure step by step. After the air flows through the separator and filter in the unit, the air contained in it is removed The oil and impurities in the high-pressure air can filter the fine particles (PM2.5) in the inhaled air to a safety value of less than 10 micrograms, which meets the standards set by the World Health Organization, making the exhaust gas clean and tasteless. The personnel provide highly purified, clean, odorless, safe and reliable compressed breathing air.

Main parameters

Model HC-X720Z
Work pressure 33Mpa Mpa(330bar)
Displacement (inhalation state) 720L/min
Type X-type layout-4-cylinder four-stage reciprocating piston compression
 
Drive 380V/50Hz/15kw
Lubrication method Oil pump lubrication (food grade lubricant 750-H2)
Cooling method Air cooling
Control method PLC system automatic shutdown, automatic sewage discharge, temperature control system, phase sequence protection function, emergency stop function, low noise, low temperature, low speed, oil filter, touch screen
 
Clean air 1 air filtration, 3 oil-water separation, 1 air purification
 
Safety devices There are safety valves at all levels, automatic shutdown function, and the whole case structure
 
Packing size (length×width×height) 98×145×175cm
Weight 690kg
Inflation speed It takes about 3 minutes to fill a 6-liter bottle with 30Mpa
 
Packing List Instruction manual, safety inspection report certificate, 4 sets of inflation hoses and joints

 

  1. Model:HC-X720Z
  2. Work pressure:33Mpa Mpa(330bar)
  3. Displacement (inhalation state):720L/min  L/min
  4. Type:X-type layout-4-cylinder four-stage reciprocating piston compression
  5. Drive: 380V/50Hz/15kw
  6. Lubrication method:Oil pump lubrication (food grade lubricant 750-H2)
  7. Cooling method:Air cooling
  8. Control method:PLC system automatic shutdown, automatic sewage discharge, temperature control system, phase sequence protection function, emergency stop function, low noise, low temperature, low speed, oil filter, touch screen
  9. Clean air:1 air filtration, 3 oil-water separation, 1 air purification
  10. Safety devices:There are safety valves at all levels, automatic shutdown function, and the whole case structure
  11. Packing size (length×width×height):98×145×175cm
  12. Weight:690kg
  13. Inflation speed:It takes about 3 minutes to fill a 6-liter bottle with 30Mpa
  14. Certified product:CE certification, MA test report
  15. Packing List:Instruction manual, safety inspection report certificate, 4 sets of inflation hoses and joints

Product composition and characteristics
 

1. Pressure sensor: accurate data, free setting of shutdown pressure;

2. High-efficiency oil pump lubrication: to ensure equipment operation;

3. Cooling method: equipped with inter-stage filter system, final stainless steel cooling;

4. Filtration method: equipped with air inlet filtration, intermediate filtration and deep air purification system, the compressed gas is safe and clean;

5. Safety guarantee: box design, inter-stage safety valve to ensure the safety of the cylinder and personnel;

6. Noise control: built-in silencer;

7. Oil filtering function: keep the lubricating oil clean, reduce machine wear and increase service life;

8. PLC microcomputer control system;

9. Automatic shutdown, automatic sewage discharge, running timer;

10. With operating temperature and pressure display at all levels;

11. Motor overload and overvoltage protection;

12. Motor star-delta start, phase sequence protection function;

13. Manual emergency stop switch;

14. Visual oil window, intuitively understand the oil position;

Main application
            Diving bresthing                                                                  Fire Bresthing

Fire breathing application: Equipped in the gas supply stations of the fire brigade or various fire-fighting vehicles, it provides emergency gas supply at the scene of a fire or in the rescue and relief process, so that the majority of firefighters will be exposed to various environments such as dense smoke, poisonous gas, steam or oxygen deficiency. Breathing high-purity, clean, odorless, safe and reliable compressed air ensures that fire extinguishers can safely and effectively carry out fire fighting, rescue, disaster relief, and rescue.
Diving breathing application: Diving clubs, diving enthusiasts, marine breeding, marine rescue, shipboard equipment, underground operations, fishery fishing, aquaculture, sunken object salvage, underwater engineering, water parks, shipbuilding and other industries, providing divers with high purification, clean and tasteless , Safe and reliable compressed breathing air. In an environment that cannot meet the requirements of the human body for normal breathing, the air is filled into a high-pressure gas cylinder for human breathing.

Product display

                       

If you want us to provide you with detailed technical design and quotation, please provide the following technical parameters, and we will reply to your email or phone within 24 hours.

1.Flow: _____ Nm3 / hour

2.Pressure: _____Bar(MPa)

3. How many cylinders to fill

4. Whether it needs to be filled every day

                         

After-sales Service: Proive After-Sales Service
Warranty: 18monthes
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Lubrication Style: Oil-free
Customization:
Available

|

air compressor

What are the advantages of using an air compressor in construction?

Using an air compressor in construction offers numerous advantages that contribute to increased efficiency, productivity, and versatility. Here are some key benefits of using air compressors in construction:

  • Powering Pneumatic Tools: Air compressors are commonly used to power a wide range of pneumatic tools on construction sites. Tools such as jackhammers, nail guns, impact wrenches, drills, and sanders can be operated using compressed air. Pneumatic tools are often preferred due to their lightweight, compact design and ability to deliver high torque or impact force.
  • Efficient Operation: Air compressors provide a continuous and reliable source of power for pneumatic tools, allowing for uninterrupted operation without the need for frequent battery changes or recharging. This helps to maintain a smooth workflow and reduces downtime.
  • Portability: Many construction air compressors are designed to be portable, featuring wheels or handles for easy maneuverability on job sites. Portable air compressors can be transported to different areas of the construction site as needed, providing power wherever it is required.
  • Versatility: Air compressors are versatile tools that can be used for various applications in construction. Apart from powering pneumatic tools, they can also be utilized for tasks such as inflating tires, cleaning debris, operating air-operated pumps, and powering air horns.
  • Increased Productivity: The efficient operation and power output of air compressors enable construction workers to complete tasks more quickly and effectively. Pneumatic tools powered by air compressors often offer higher performance and faster operation compared to their electric or manual counterparts.
  • Cost Savings: Air compressors can contribute to cost savings in construction projects. Pneumatic tools powered by air compressors are generally more durable and have longer lifespans compared to electric tools. Additionally, since air compressors use compressed air as their power source, they do not require the purchase or disposal of batteries or fuel, reducing ongoing operational expenses.
  • Reduced Electrocution Risk: Construction sites can be hazardous environments, with the risk of electrocution from electrical tools or equipment. By utilizing air compressors and pneumatic tools, the reliance on electrical power is minimized, reducing the risk of electrocution accidents.

It is important to select the appropriate air compressor for construction applications based on factors such as required air pressure, volume, portability, and durability. Regular maintenance, including proper lubrication and cleaning, is crucial to ensure the optimal performance and longevity of air compressors in construction settings.

In summary, the advantages of using air compressors in construction include powering pneumatic tools, efficient operation, portability, versatility, increased productivity, cost savings, and reduced electrocution risk, making them valuable assets on construction sites.

air compressor

What are the environmental considerations when using air compressors?

When using air compressors, there are several environmental considerations to keep in mind. Here’s an in-depth look at some of the key factors:

Energy Efficiency:

Energy efficiency is a crucial environmental consideration when using air compressors. Compressing air requires a significant amount of energy, and inefficient compressors can consume excessive power, leading to higher energy consumption and increased greenhouse gas emissions. It is important to choose energy-efficient air compressors that incorporate features such as Variable Speed Drive (VSD) technology and efficient motor design, as they can help minimize energy waste and reduce the carbon footprint.

Air Leakage:

Air leakage is a common issue in compressed air systems and can contribute to energy waste and environmental impact. Leaks in the system result in the continuous release of compressed air, requiring the compressor to work harder and consume more energy to maintain the desired pressure. Regular inspection and maintenance of the compressed air system to detect and repair leaks can help reduce air loss and improve overall energy efficiency.

Noise Pollution:

Air compressors can generate significant noise levels during operation, which can contribute to noise pollution. Prolonged exposure to high noise levels can have detrimental effects on human health and well-being and can also impact the surrounding environment and wildlife. It is important to consider noise reduction measures such as sound insulation, proper equipment placement, and using quieter compressor models to mitigate the impact of noise pollution.

Emissions:

While air compressors do not directly emit pollutants, the electricity or fuel used to power them can have an environmental impact. If the electricity is generated from fossil fuels, the associated emissions from power plants contribute to air pollution and greenhouse gas emissions. Choosing energy sources with lower emissions, such as renewable energy, can help reduce the environmental impact of operating air compressors.

Proper Waste Management:

Proper waste management is essential when using air compressors. This includes the appropriate disposal of compressor lubricants, filters, and other maintenance-related materials. It is important to follow local regulations and guidelines for waste disposal to prevent contamination of soil, water, or air and minimize the environmental impact.

Sustainable Practices:

Adopting sustainable practices can further reduce the environmental impact of using air compressors. This can include implementing preventive maintenance programs to optimize performance, reducing idle time, and promoting responsible use of compressed air by avoiding overpressurization and optimizing system design.

By considering these environmental factors and taking appropriate measures, it is possible to minimize the environmental impact associated with the use of air compressors. Choosing energy-efficient models, addressing air leaks, managing waste properly, and adopting sustainable practices can contribute to a more environmentally friendly operation.

air compressor

What is the purpose of an air compressor?

An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:

1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.

2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.

3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.

4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.

5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.

6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.

Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.

China Professional 720L/Min Gasoline/Electric PLC Control System High Pressure Air Compressor Use for Scuba Diving and Firefighting   air compressor for saleChina Professional 720L/Min Gasoline/Electric PLC Control System High Pressure Air Compressor Use for Scuba Diving and Firefighting   air compressor for sale
editor by CX 2023-10-20

China best 2021 New High Efficiency (30% Energy Saving) Single Screw Air Compressor 100% Oil-Free Low Pressure Compressors 132kw 8-12.5 Bar manufacturer

Product Description

Lead Time

Product Description

TR-132VA/W 0.8-1.25Mpa 8-12.5Bar 5.07-22.52m3/min 132KW new oil free silent screw air compressor motor for dental machine

Specifications
 

Model

Maximum

working

Pressure

FAD

Motor

Power

Noise

Pipe diameters of

cooling water

in and out

Quantity of 
cooling water

Quantity of

lubricating

water

Dimension Weight

Air

outlet

 Inlet water

32ºC 

L*W*H
Mpa M3/min KW DB  T/H L mm KG
TR-55VA/W 0.8 3.0-10.3 55 69 1 1/2″ 12 1.4) optimized design, large rotor, low rotary speed (within 3000r/min), without the gearbox.

direct connection drive, it has a lower rotary speed and longer life compared with dry oil-free screw air compressor(10000r/min-20000r/min).

12. Automatic Cleaning System

The function of automatic water exchange and automatic system cleaning can be realized, and the interior of the compressor is more clean and sanitary.
 

Introduction

Company Information

Package Delivery

 

BACK HOME

Lubrication Style: Oil-free
Cooling System: Water Cooling
Power Source: AC Power
Structure Type: Closed Type
Installation Type: Stationary Type
Type: Single Screw Compressor
Samples:
US$ 86800/set(s)
1 set(s)(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can air compressors be used for painting and sandblasting?

Yes, air compressors can be used for both painting and sandblasting applications. Here’s a closer look at how air compressors are utilized for painting and sandblasting:

Painting:

Air compressors are commonly used in painting processes, especially in automotive, industrial, and construction applications. Here’s how they are involved:

  • Spray Guns: Air compressors power spray guns used for applying paint coatings. The compressed air atomizes the paint, creating a fine mist that can be evenly sprayed onto surfaces. The pressure and volume of the compressed air impact the spray pattern, coverage, and overall finish quality.
  • Paint Mixers and Agitators: Compressed air is often used to power mixers and agitators that ensure proper blending of paint components. These devices use the compressed air to stir or circulate the paint, preventing settling and maintaining a consistent mixture.
  • Airbrushing: Air compressors are essential for airbrushing techniques, which require precise control over airflow and pressure. Airbrushes are commonly used in artistic applications, such as illustrations, murals, and fine detailing work.

Sandblasting:

Air compressors play a crucial role in sandblasting operations, which involve propelling abrasive materials at high velocity to clean, etch, or prepare surfaces. Here’s how air compressors are used in sandblasting:

  • Blasting Cabinets: Air compressors power blasting cabinets or booths, which are enclosed spaces where the sandblasting process takes place. The compressed air propels the abrasive media, such as sand or grit, through a nozzle or gun, creating a forceful stream that impacts the surface being treated.
  • Abrasive Blasting Pots: Air compressors supply air to abrasive blasting pots or tanks that store and pressurize the abrasive media. The compressed air from the compressor enters the pot, pressurizing it and allowing for a controlled release of the abrasive material during the sandblasting process.
  • Air Dryers and Filters: In sandblasting applications, it is crucial to have clean, dry air to prevent moisture and contaminants from affecting the abrasive blasting process and the quality of the surface being treated. Air compressors may be equipped with air dryers and filters to remove moisture, oil, and impurities from the compressed air.

When using air compressors for painting or sandblasting, it is important to consider factors such as the compressor’s pressure and volume output, the specific requirements of the application, and the type of tools or equipment being used. Consult the manufacturer’s guidelines and recommendations to ensure the air compressor is suitable for the intended painting or sandblasting tasks.

Proper safety measures, such as wearing protective gear and following established protocols, should always be followed when working with air compressors for painting and sandblasting applications.

air compressor

Can air compressors be used for medical and dental applications?

Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:

1. Dental Tools:

Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.

2. Medical Devices:

Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.

3. Laboratory Applications:

Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.

4. Surgical Tools:

In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.

5. Sterilization and Autoclaves:

Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.

6. Dental Air Compressors:

Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.

7. Air Quality Standards:

In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.

8. Compliance and Regulations:

Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.

It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China best 2021 New High Efficiency (30% Energy Saving) Single Screw Air Compressor 100% Oil-Free Low Pressure Compressors 132kw 8-12.5 Bar   manufacturer China best 2021 New High Efficiency (30% Energy Saving) Single Screw Air Compressor 100% Oil-Free Low Pressure Compressors 132kw 8-12.5 Bar   manufacturer
editor by CX 2023-10-19

China Custom CHINAMFG High Pressure Quiet Air Compressor Manufacturers air compressor lowes

Product Description

DHH High Pressure Quiet Air Compressor Manufacturers
 

Dehaha Compressor was founded in 1996 with over 150 skilled employees and more than 25 R&D engineers’ teams.We focus on the research & develop, manufacture and energy-saving solutions of screw air compressor to create value for customers and society. In 2018 our total sales volume approached 15 million US dollars. By over 22 years enhanced experiences of designing, producing and marketing,today our valued customers are over 130 countries. 

Dehaha’s primary businesses focus in following key areas: 

Oil-injected rotary screw compressors 
Portable screw air compressors 
Oil free air compressors 
High pressure air compressors 
Air treatment equipment

At DEHAHA, we earn our customers’ trust and satisfaction by manufacturing the superior quality compressed air products for all industries. All of our products are designed for reliable performance, easy maintenance, and maximum energy efficiency. We have sales representatives who can speak English, Spanish, French,and Russian which makes it easier for our clients from all over the world to interact and negotiate with us.

Dehaha continuously innovates product development and management to meet customers’ demand. The powerful enterprise culture and continuous innovation make CHINAMFG improved rapidly to reach the business principle “Energy Saving First, Mutual Value Shared”. 

Dehaha mission is to be a world-renowned high-end brand, with sustainable development, constantly improving its own value and sharing it with our customers and staff. Committed to offer our customers a silent and energy-saving manufactured products.  
 

Model No. Power  Max.  Capacity     Cooling  Driven Starting  N.G.(Kg) Air Measure (mm)
(kw/hp) Pressure (m3/min) Method System Outlet
DM-10A 7.5/10 8 bar 1.2 Air  Direct Frequency 300 G3/4″ 900*600*970
DM-20A 15/20 8 bar 2.3 390 G3/4″ 1060*690*1000
10 bar 2.2
12.5 bar /
DM-30A 22/30 8 bar 3.53 450 G1″ 1200*750*1100
10 bar 3.26
12.5 bar /
DM-40A 30/40 8 bar 5.2 550 G1 1/2″ 1300*1000*1200
10 bar /
12.5 bar /
DM-50A 37/50 8 bar 6.53 750 G1 1/4″ 1300*1000*1200
10 bar 5.67
12.5 bar 5.02
DM-60A 45/60 8 bar 8.37 850 G1 1/4″ 1300*1000*1400
10 bar 7.36
12.5 bar 6.23
DM-75A 55/75 8 bar 10.23 1550 G2″ 1800*1300*1700
10 bar 8.88
12.5 bar 7.57
DM-100A 75/100 8 bar 13.2 1750 G2″ 1800*1400*1700
10 bar 11.45
12.5 bar 9.98
DM-125A 90/125 8 bar 16.33 2350 DN50 1850*1450*1700
10 bar 13.65
12.5 bar 12.12
DM-150A 110/150 8 bar 19.3 2650 DN65 2500*1600*1800
10 bar 17.06
12.5 bar 15.08
DM-175A 132/175 8 bar 23 2850 DN65 2600*1600*1800
10 bar 20.3
12.5 bar 18.67

 

 

Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: None
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

How do you maintain proper air quality in compressed air systems?

Maintaining proper air quality in compressed air systems is essential to ensure the reliability and performance of pneumatic equipment and the safety of downstream processes. Here are some key steps to maintain air quality:

1. Air Filtration:

Install appropriate air filters in the compressed air system to remove contaminants such as dust, dirt, oil, and water. Filters are typically placed at various points in the system, including the compressor intake, aftercoolers, and before point-of-use applications. Regularly inspect and replace filters to ensure their effectiveness.

2. Moisture Control:

Excessive moisture in compressed air can cause corrosion, equipment malfunction, and compromised product quality. Use moisture separators or dryers to remove moisture from the compressed air. Refrigerated dryers, desiccant dryers, or membrane dryers are commonly employed to achieve the desired level of dryness.

3. Oil Removal:

If the compressed air system utilizes oil-lubricated compressors, it is essential to incorporate proper oil removal mechanisms. This can include coalescing filters or adsorption filters to remove oil aerosols and vapors from the air. Oil-free compressors eliminate the need for oil removal.

4. Regular Maintenance:

Perform routine maintenance on the compressed air system, including inspections, cleaning, and servicing of equipment. This helps identify and address any potential issues that may affect air quality, such as leaks, clogged filters, or malfunctioning dryers.

5. Air Receiver Tank Maintenance:

Regularly drain and clean the air receiver tank to remove accumulated contaminants, including water and debris. Proper maintenance of the tank helps prevent contamination from being introduced into the compressed air system.

6. Air Quality Testing:

Periodically test the quality of the compressed air using appropriate instruments and methods. This can include measuring particle concentration, oil content, dew point, and microbial contamination. Air quality testing provides valuable information about the effectiveness of the filtration and drying processes and helps ensure compliance with industry standards.

7. Education and Training:

Educate personnel working with compressed air systems about the importance of air quality and the proper procedures for maintaining it. Provide training on the use and maintenance of filtration and drying equipment, as well as awareness of potential contaminants and their impact on downstream processes.

8. Documentation and Record-Keeping:

Maintain accurate records of maintenance activities, including filter replacements, drying system performance, and air quality test results. Documentation helps track the system’s performance over time and provides a reference for troubleshooting or compliance purposes.

By implementing these practices, compressed air systems can maintain proper air quality, minimize equipment damage, and ensure the integrity of processes that rely on compressed air.

air compressor

Are there air compressors specifically designed for high-pressure applications?

Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:

1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.

2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.

3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.

4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:

  • Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
  • Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
  • Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
  • Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
  • Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.

5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.

When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.

High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.

China Custom CHINAMFG High Pressure Quiet Air Compressor Manufacturers   air compressor lowesChina Custom CHINAMFG High Pressure Quiet Air Compressor Manufacturers   air compressor lowes
editor by CX 2023-10-19