Product Description
Product Description
ABOUT US
HangZhou Ouyu is an importing and exporting branch of ZHangZhoug Briliant Refrigeration Equipment Co., Ltd., a professional Refrigeration Equipment Co., Ltd.,It integrates compressor design, development, production and sales Located in ZHangZhoug province,founded in 2013.Now we have more than 100 employees, covers a total area of 17,000 square meters.
Small volume ,light weight,small vibration,low noise,high effciency and energy saving,environmental protection,security and stability.
| Compressor Model | Nominal Motor Power (HP/KW) | Displacement (50Hz)m³/h | Number of Cylinder x Diameter x Stroke mm | Oil injection volume (L) | Powersupply V/Φ/Hz | Electricalparameter | Crankcase Heater (220V) W | Oilsupply method | Weight (including freezingoil) Kg | |
| Max.operating current A | Starting current/rotor locked current. Operating current A | |||||||||
| YBF2FC-2.2Z | 2/1.5 | 9.54 | 2×φ46×33 | 1 | △/Y Directly start the motor 220~240△ 380~420Y /3~/50 265~290△ 400~480Y /3~/60 |
8.5/4.9 | 39/22.5 | 60 | Centrifgal lubrcation | 45 |
| YBF2FC-3.2G | 3/2.2 | 9.54 | 2×φ46×33 | 1 | 10.0/5.8 | 44.2/25.5 | 60 | 47 | ||
| YBF2DC-2.2Z | 2/1.5 | 13.42 | 2×φ50×39.3 | 1.5 | 11.9/6.9 | 53.7/30.7 | 100 | 68 | ||
| YBF2DC-3.2G | 3/2.2 | 13.42 | 2×φ50×39.3 | 1.5 | 13.5/7.8 | 64/37 | 100 | 71 | ||
| YBF2CC-3.2Z | 3/2.2 | 16.24 | 2×φ55×39.3 | 1.5 | 14.8/8.5 | 64/37 | 100 | 70 | ||
| YBF2CC-4.2G | 4/3.0 | 16.24 | 2×φ55×39.3 | 1.5 | 16.4/9.4 | 76.6/44.2 | 100 | 70 | ||
| YBF4FC-3.2Z | 3/2.2 | 18.05 | 4×φ41×39.3 | 2 | 15.9/9.2 | 76.6/44.2 | 100 | 81 | ||
| YBF4FC-5.2G | 5/3.7 | 18.05 | 4×φ41×39.3 | 2 | 18.7/10.8 | 107.7/62.2 | 100 | 85 | ||
| YBF4EC-4.2Z | 4/3.0 | 22.72 | 4×φ46×39.3 | 2 | 18.5/10.7 | 92.7/53.3 | 100 | 82 | ||
| YBF4EC-6.2G | 6/4.4 | 22.72 | 4×φ46×39.3 | 2 | 22.9/13.2 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-5.2Z | 5/3.7 | 26.84 | 4×φ50×39.3 | 2 | 23.4/13.5 | 107.7/62.2 | 100 | 85 | ||
| YBF4DC-7.2G | 7/5.1 | 26.84 | 4×φ50×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 88 | ||
| YBF4CC-6.2Z | 6/4.4 | 32.48 | 4×φ55×39.3 | 2 | 27.5/15.9 | 142.8/82.4 | 100 | 89 | ||
| YBF4CC-9.2G | 9/6.6 | 32.48 | 4×φ55×39.3 | 2 | 34.5/20.0 | 142.8/82.4 | 100 | 89 | ||
| YBF4VCS-6.2Z | 6/4.4 | 34.73 | 4×φ55×39.3 | 2.6 | PW Split winding starting motor 380~420YY /3/50 400~480YY /3/60 |
14 | 39/68 | 120 | 117 | |
| YBF4VCS-10.2G | 10/7.5 | 34.73 | 4×φ55×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4TCS-8.2Z | 8/5.5 | 41.33 | 4×φ60×42 | 2.6 | 17 | 49/81 | 120 | 122 | ||
| YBF4TCS-12.2G | 12/8.8 | 41.33 | 4×φ60×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4PCS-10.2Z | 10/7.5 | 48.05 | 4×φ65×42 | 2.6 | 21 | 59/99 | 120 | 127 | ||
| YBF4PCS-15.2G | 15/10.5 | 48.05 | 4×φ65×42 | 2.6 | 31 | 81/132 | 120 | 135 | ||
| YBF4NCS-12.2Z | 12/8.8 | 56.25 | 4×φ70×42 | 2.6 | 24 | 69/113 | 120 | 129 | ||
| YBF4NCS-20.2G | 20/15 | 56.25 | 4×φ70×42 | 2.6 | 37 | 97/158 | 120 | 138 | ||
| YBF4H-15.2Z | 15/10.5 | 73.6 | 4×φ70×55 | 4.5 | 31 | 81/132 | 120 | Forced-lubrication | 183 | |
| YBF4H-25.2G | 25/18.5 | 73.6 | 4×φ70×55 | 4.5 | 45 | 116/193 | 120 | 194 | ||
| YBF4G-20.2Z | 20/15 | 84.5 | 4×φ75×55 | 4.5 | 37 | 97/158 | 120 | 192 | ||
| YBF4G-30.2G | 30/22 | 84.5 | 4×φ75×55 | 4.5 | 53 | 135/220 | 120 | 206 | ||
| YBF6H-25.2Z | 25/18.5 | 110.5 | 6×φ70×55 | 4.75 | 45 | 116/193 | 120 | 224 | ||
| YBF6H-35.2G | 35/25.5 | 110.5 | 6×φ70×55 | 4.75 | 61 | 147/262 | 120 | 235 | ||
| YBF6G-30.2Z | 30/22 | 126.8 | 6×φ75×55 | 4.75 | 53 | 135/220 | 120 | 228 | ||
| YBF6G-40.2G | 40/30 | 126.8 | 6×φ75×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-40.2Z | 40/30 | 151.6 | 6×φ82×55 | 4.75 | 78 | 180/323 | 120 | 238 | ||
| YBF6F-50.2G | 50/37 | 151.6 | 6×φ82×55 | 4.75 | 92 | 226/404 | 120 | 241 | ||
Company Profile
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 1 Years |
|---|---|
| Warranty: | 1 Years |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Structure Type: | Semi-Closed Type |
| Samples: |
US$ 490/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors used in the food and beverage industry?
Air compressors play a vital role in the food and beverage industry, providing a reliable source of compressed air for various applications. Here are some common uses of air compressors in this industry:
1. Packaging and Filling:
Air compressors are extensively used in packaging and filling operations in the food and beverage industry. Compressed air is utilized to power pneumatic systems that control the movement and operation of packaging machinery, such as filling machines, capping machines, labeling equipment, and sealing devices. The precise and controlled delivery of compressed air ensures accurate and efficient packaging of products.
2. Cleaning and Sanitization:
Air compressors are employed for cleaning and sanitization purposes in food and beverage processing facilities. Compressed air is used to operate air-powered cleaning equipment, such as air blowguns, air-operated vacuum systems, and air knives. It helps remove debris, dust, and contaminants from production lines, equipment, and hard-to-reach areas. Additionally, compressed air is used for drying surfaces after cleaning and for applying sanitizing agents.
3. Cooling and Refrigeration:
In the food and beverage industry, air compressors are utilized in cooling and refrigeration systems. Compressed air is used to drive air compressors in refrigeration units, enabling the circulation of refrigerants and maintaining optimal temperatures for food storage and preservation. The controlled airflow provided by the compressors facilitates efficient cooling and refrigeration processes.
4. Aeration and Mixing:
Air compressors are used for aeration and mixing applications in the food and beverage industry. Compressed air is introduced into processes such as fermentation, dough mixing, and wastewater treatment. It helps in promoting oxygen transfer, enhancing microbial activity, and facilitating proper mixing of ingredients or substances, contributing to the desired quality and consistency of food and beverage products.
5. Pneumatic Conveying:
In food processing plants, air compressors are employed for pneumatic conveying systems. Compressed air is used to transport bulk materials such as grains, powders, and ingredients through pipes or tubes. It enables the gentle and efficient movement of materials without the need for mechanical conveyors, reducing the risk of product damage or contamination.
6. Quality Control and Testing:
Air compressors are utilized in quality control and testing processes within the food and beverage industry. Compressed air is used for leak testing of packaging materials, containers, and seals to ensure product integrity. It is also employed for spraying air or gases during sensory analysis and flavor testing.
7. Air Agitation:
In certain food and beverage production processes, air compressors are used for air agitation. Compressed air is introduced into tanks, mixing vessels, or fermentation tanks to create turbulence and promote mixing or chemical reactions. It aids in achieving consistent product quality and uniform distribution of ingredients or additives.
It is important to note that air compressors used in the food and beverage industry must meet strict hygiene and safety standards. They may require specific filtration systems, oil-free operation, and compliance with food safety regulations to prevent contamination or product spoilage.
By utilizing air compressors effectively, the food and beverage industry can benefit from improved productivity, enhanced product quality, and efficient processing operations.
.webp)
What is the energy efficiency of modern air compressors?
The energy efficiency of modern air compressors has significantly improved due to advancements in technology and design. Here’s an in-depth look at the energy efficiency features and factors that contribute to the efficiency of modern air compressors:
Variable Speed Drive (VSD) Technology:
Many modern air compressors utilize Variable Speed Drive (VSD) technology, also known as Variable Frequency Drive (VFD). This technology allows the compressor motor to adjust its speed according to the compressed air demand. By matching the motor speed to the required airflow, VSD compressors can avoid excessive energy consumption during periods of low demand, resulting in significant energy savings compared to fixed-speed compressors.
Air Leakage Reduction:
Air leakage is a common issue in compressed air systems and can lead to substantial energy waste. Modern air compressors often feature improved sealing and advanced control systems to minimize air leaks. By reducing air leakage, the compressor can maintain optimal pressure levels more efficiently, resulting in energy savings.
Efficient Motor Design:
The motor of an air compressor plays a crucial role in its energy efficiency. Modern compressors incorporate high-efficiency electric motors that meet or exceed established energy efficiency standards. These motors are designed to minimize energy losses and operate more efficiently, reducing overall power consumption.
Optimized Control Systems:
Advanced control systems are integrated into modern air compressors to optimize their performance and energy consumption. These control systems monitor various parameters, such as air pressure, temperature, and airflow, and adjust compressor operation accordingly. By precisely controlling the compressor’s output to match the demand, these systems ensure efficient and energy-saving operation.
Air Storage and Distribution:
Efficient air storage and distribution systems are essential for minimizing energy losses in compressed air systems. Modern air compressors often include properly sized and insulated air storage tanks and well-designed piping systems that reduce pressure drops and minimize heat transfer. These measures help to maintain a consistent and efficient supply of compressed air throughout the system, reducing energy waste.
Energy Management and Monitoring:
Some modern air compressors feature energy management and monitoring systems that provide real-time data on energy consumption and performance. These systems allow operators to identify energy inefficiencies, optimize compressor settings, and implement energy-saving practices.
It’s important to note that the energy efficiency of an air compressor also depends on factors such as the specific model, size, and application. Manufacturers often provide energy efficiency ratings or specifications for their compressors, which can help in comparing different models and selecting the most efficient option for a particular application.
Overall, modern air compressors incorporate various energy-saving technologies and design elements to enhance their efficiency. Investing in an energy-efficient air compressor not only reduces operational costs but also contributes to sustainability efforts by minimizing energy consumption and reducing carbon emissions.
.webp)
Can you explain the basics of air compressor terminology?
Understanding the basic terminology related to air compressors can help in better comprehension of their operation and discussions related to them. Here are some essential terms related to air compressors:
1. CFM (Cubic Feet per Minute): CFM is a unit of measurement that denotes the volumetric flow rate of compressed air. It indicates the amount of air a compressor can deliver within a minute and is a crucial factor in determining the compressor’s capacity.
2. PSI (Pounds per Square Inch): PSI is a unit of measurement used to quantify pressure. It represents the force exerted by the compressed air on a specific area. PSI is a vital specification for understanding the pressure capabilities of an air compressor and determining its suitability for various applications.
3. Duty Cycle: Duty cycle refers to the percentage of time an air compressor can operate in a given time period. It indicates the compressor’s ability to handle continuous operation without overheating or experiencing performance issues. For instance, a compressor with a 50% duty cycle can run for half the time in a given hour or cycle.
4. Horsepower (HP): Horsepower is a unit used to measure the power output of a compressor motor. It indicates the motor’s capacity to drive the compressor pump and is often used as a reference for comparing different compressor models.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air delivered by the compressor. It helps in stabilizing pressure fluctuations, allowing for a more consistent supply of compressed air during peak demand periods.
6. Single-Stage vs. Two-Stage: These terms refer to the number of compression stages in a reciprocating air compressor. In a single-stage compressor, air is compressed in a single stroke of the piston, while in a two-stage compressor, it undergoes initial compression in one stage and further compression in a second stage, resulting in higher pressures.
7. Oil-Free vs. Oil-Lubricated: These terms describe the lubrication method used in air compressors. Oil-free compressors have internal components that do not require oil lubrication, making them suitable for applications where oil contamination is a concern. Oil-lubricated compressors use oil for lubrication, enhancing durability and performance but requiring regular oil changes and maintenance.
8. Pressure Switch: A pressure switch is an electrical component that automatically starts and stops the compressor motor based on the pre-set pressure levels. It helps maintain the desired pressure range in the receiver tank and protects the compressor from over-pressurization.
9. Regulator: A regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications and ensures a consistent and safe supply of compressed air.
These are some of the fundamental terms associated with air compressors. Familiarizing yourself with these terms will aid in understanding and effectively communicating about air compressors and their functionality.


editor by CX 2024-04-23
China Hot selling 20HP Air Condensing Unit Cold Room Condenser Unit Refrigeration Compressor supplier
Product Description
Refrigeration Compressor Unit for Cold Storage / Cold Room
Product Parameters
- High efficiency and energy saving, COP increases by about 8%.
- Moon-tech’s patent rotor produces smooth operation, high efficiency and low noise.
- Moon-tech’s patent capacity control device realizes flexible and accurate control.
- Moon-tech’s patent design lowers the noise and vibration.
- Precisely circulation oil control
- Moon-tech’s patent high efficiency heat exchange tube
- Reliability and stability
- Refrigerant: Ammonian R717, Freon R404a, R507a, R22, R134a, etc
| Refrigerant | R717 | R22 |
| Discharge pressure MPa | below 1.67 | below 1.67 |
| Corresponding saturated temperature °C | below 45 | below 46 |
| Suction pressure MPa | -0.045-0.57 | -0.017-0.62 |
| Corresponding evaporative temperature °C | -45-12.5 | -45-12.5 |
| Oil pressure MPa | 0.1-0.3 higher than discharge pressure | |
| Oil temperature °C | 30-65 | |
| Cooling water inlet temperature °C | 15.5-33 | |
| Cooling water flow deviation | ±10% | |
Detailed Photos
Screw Refrigeration Compressor Unit
Screw compressor unit is widely used in food freezing and refrigeration, process cooling, gas liquefaction, building aggregate cooling, scientific research experiments, permafrost drilling, sports venues, mine heat hazard treatment and other fields that require artificial low-temperature environments. The compressor unit can be customized according to user needs, and the energy adjustment device (adjustable volume-reduction ratio, frequency conversion) is optional, and the standard configuration control mode is automatic; data can be shared in the cloud and monitored in real time.
More models
Single-Stage Screw Refrigeration Compressor Unit
Applicable Conditions
| Refrigerant | R717A | R507A |
| Discharge Pressure (MPa) | <=1.67 | <=1.95 |
| Suction Pressure (MPa) | -0.03 ~0.586 | |
| Oil Pressure (MPa) | 0.1 ~ 0.3 Higher Than Discharge Pressure | |
| Oil Temperature (ºC) | 30~65 | |
| Cooling Water InletTemperature (ºC) | 15~33 | |
| Cooling Water Flow Deviation | +-10% | |
Features.
*The compressor has a full type spectrum and the displacement range is 285 m3/h ~14. Now Moon-tech is the largest base of R&D and export for refrigeration & air-conditioning equipment in China. Since its establishment, CHINAMFG has been committed to innovate refrigeration technology and provide our customers with high quality equipment & solutions. Being a responsible enterprise, CHINAMFG always pays close attention to harmonious development between human beings and nature, and the whole design and manufacturing process of our products is guided by principle ” environmental protection, energy saving and safety”.
Our mission: Constantly create value for customers.
As a leading company in Chinese refrigeration industry, CHINAMFG has been keeping paces with the world latest technology in order to provide stable, low maintenance and high quality equipments in food processing, low temperature cold storage, petrochemical, semiconductor, chemical industry, hydroelectricity, coal industry etc.
In food cold chain field, CHINAMFG holds more than 60% domestic market share. In overseas market, more than 400 customers from 80 countries and regions have benefited from our products and after sale services.
Moon-Tech, a leading refrigeration company is your ideal partner in temperature control field!
FAQ
1.What’s your advantage?
A: Honest business with competitive price and professional service on export process.
2.How I believe you?
A : We consider honest as the life of our company, we can tell you the contact information of our some other clients for you to check our credit. Besides, there is trade assurance from Alibaba, your order and money will be well guaranteed.
3.Can you give warranty of your products?
A: Yes, we extend a 100% satisfaction guarantee on all items. Please feel free to feedback immediately if you are not pleased with our quality or service.
4.Where are you?
Can I visit you? A: Sure,welcome to you visit our factory at any time.
5.How about the delivery time?
A: Within 15-35 days after we confirm you requirement.
6.what kind of payment does your company support?
A: T/T, 100% L/C at sight, Cash, Western Union are all accepted if you have other payment,please contact me.
| Cooling Method: | Indirect Cooling |
|---|---|
| Certification: | ISO |
| Condition: | New |
| Advanced Technology: | Over 10 Independent Intellectual Property Rights |
| Widely Application: | Seafood Processing / Meat Processing/ Cold Storage |
| Application: | Logistics/ Ice Cream / Beverages / Food Oil & Gas |
| Samples: |
US$ 60000/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
How are air compressors utilized in the aerospace industry?
Air compressors play a crucial role in various applications within the aerospace industry. They are utilized for a wide range of tasks that require compressed air or gas. Here are some key uses of air compressors in the aerospace industry:
1. Aircraft Systems:
Air compressors are used in aircraft systems to provide compressed air for various functions. They supply compressed air for pneumatic systems, such as landing gear operation, braking systems, wing flap control, and flight control surfaces. Compressed air is also utilized for starting aircraft engines and for cabin pressurization and air conditioning systems.
2. Ground Support Equipment:
Air compressors are employed in ground support equipment used in the aerospace industry. They provide compressed air for tasks such as inflating aircraft tires, operating pneumatic tools for maintenance and repair, and powering air-driven systems for fueling, lubrication, and hydraulic operations.
3. Component Testing:
Air compressors are utilized in component testing within the aerospace industry. They supply compressed air for testing and calibrating various aircraft components, such as valves, actuators, pressure sensors, pneumatic switches, and control systems. Compressed air is used to simulate operating conditions and evaluate the performance and reliability of these components.
4. Airborne Systems:
In certain aircraft, air compressors are employed for specific airborne systems. For example, in military aircraft, air compressors are used for air-to-air refueling systems, where compressed air is utilized to transfer fuel between aircraft in mid-air. Compressed air is also employed in aircraft de-icing systems, where it is used to inflate inflatable de-icing boots on the wing surfaces to remove ice accumulation during flight.
5. Environmental Control Systems:
Air compressors play a critical role in the environmental control systems of aircraft. They supply compressed air for air conditioning, ventilation, and pressurization systems, ensuring a comfortable and controlled environment inside the aircraft cabin. Compressed air is used to cool and circulate air, maintain desired cabin pressure, and control humidity levels.
6. Engine Testing:
In the aerospace industry, air compressors are utilized for engine testing purposes. They provide compressed air for engine test cells, where aircraft engines are tested for performance, efficiency, and durability. Compressed air is used to simulate different operating conditions and loads on the engine, allowing engineers to assess its performance and make necessary adjustments or improvements.
7. Oxygen Systems:
In aircraft, air compressors are involved in the production of medical-grade oxygen for onboard oxygen systems. Compressed air is passed through molecular sieve beds or other oxygen concentrator systems to separate oxygen from other components of air. The generated oxygen is then supplied to the onboard oxygen systems, ensuring a sufficient and continuous supply of breathable oxygen for passengers and crew at high altitudes.
It is important to note that air compressors used in the aerospace industry must meet stringent quality and safety standards. They need to be reliable, efficient, and capable of operating under demanding conditions to ensure the safety and performance of aircraft systems.
.webp)
Can air compressors be used for inflating tires and sporting equipment?
Yes, air compressors can be used for inflating tires and sporting equipment, providing a convenient and efficient method for achieving the desired air pressure. Here’s how air compressors are used for these purposes:
1. Tire Inflation:
Air compressors are commonly used for inflating vehicle tires, including car tires, motorcycle tires, bicycle tires, and even larger truck or trailer tires. Air compressors provide a continuous source of pressurized air, allowing for quick and accurate inflation. They are often used in automotive repair shops, gas stations, and by individuals who regularly need to inflate tires.
2. Sporting Equipment Inflation:
Air compressors are also useful for inflating various types of sporting equipment. This includes inflatable balls such as soccer balls, basketballs, footballs, and volleyballs. Additionally, air compressors can be used to inflate inflatable water toys, air mattresses, inflatable kayaks, and other recreational items that require air for proper inflation.
3. Air Tools for Inflation:
Air compressors can power air tools specifically designed for inflation purposes. These tools, known as inflators or air blow guns, provide controlled airflow for inflating tires and sporting equipment. They often have built-in pressure gauges and nozzles designed to fit different types of valves, making them versatile and suitable for various inflation tasks.
4. Adjustable Pressure:
One advantage of using air compressors for inflation is the ability to adjust the pressure. Most air compressors allow users to set the desired pressure level using a pressure regulator or control knob. This feature ensures that tires and sporting equipment are inflated to the recommended pressure, promoting optimal performance and safety.
5. Efficiency and Speed:
Air compressors provide a faster and more efficient inflation method compared to manual pumps. The continuous supply of compressed air allows for quick inflation, reducing the time and effort required to inflate tires and sporting equipment manually.
6. Portable Air Compressors:
For inflating tires and sporting equipment on the go, portable air compressors are available. These compact and lightweight compressors can be easily carried in vehicles or taken to sports events and outdoor activities, ensuring convenient access to a reliable air supply.
It is important to note that when using air compressors for inflating tires, it is recommended to follow manufacturer guidelines and proper inflation techniques to ensure safety and avoid overinflation.
.webp)
What is the role of air compressor tanks?
Air compressor tanks, also known as receiver tanks or air receivers, play a crucial role in the operation of air compressor systems. They serve several important functions:
1. Storage and Pressure Regulation: The primary role of an air compressor tank is to store compressed air. As the compressor pumps air into the tank, it accumulates and pressurizes the air. The tank acts as a reservoir, allowing the compressor to operate intermittently while providing a steady supply of compressed air during periods of high demand. It helps regulate and stabilize the pressure in the system, reducing pressure fluctuations and ensuring a consistent supply of air.
2. Condensation and Moisture Separation: Compressed air contains moisture, which can condense as the air cools down inside the tank. Air compressor tanks are equipped with moisture separators or drain valves to collect and remove this condensed moisture. The tank provides a space for the moisture to settle, allowing it to be drained out periodically. This helps prevent moisture-related issues such as corrosion, contamination, and damage to downstream equipment.
3. Heat Dissipation: During compression, air temperature increases. The air compressor tank provides a larger surface area for the compressed air to cool down and dissipate heat. This helps prevent overheating of the compressor and ensures efficient operation.
4. Pressure Surge Mitigation: Air compressor tanks act as buffers to absorb pressure surges or pulsations that may occur during compressor operation. These surges can be caused by variations in demand, sudden changes in airflow, or the cyclic nature of reciprocating compressors. The tank absorbs these pressure fluctuations, reducing stress on the compressor and other components, and providing a more stable and consistent supply of compressed air.
5. Energy Efficiency: Air compressor tanks contribute to energy efficiency by reducing the need for the compressor to run continuously. The compressor can fill the tank during periods of low demand and then shut off when the desired pressure is reached. This allows the compressor to operate in shorter cycles, reducing energy consumption and minimizing wear and tear on the compressor motor.
6. Emergency Air Supply: In the event of a power outage or compressor failure, the stored compressed air in the tank can serve as an emergency air supply. This can provide temporary air for critical operations, allowing time for maintenance or repairs to be carried out without disrupting the overall workflow.
Overall, air compressor tanks provide storage, pressure regulation, moisture separation, heat dissipation, pressure surge mitigation, energy efficiency, and emergency backup capabilities. They are vital components that enhance the performance, reliability, and longevity of air compressor systems in various industrial, commercial, and personal applications.


editor by CX 2023-10-26